题目内容
如图,几何体A1C1-ABC中,四边形AA1C1C为平行四边形,且面AA1C1C⊥面ABCAA1=A1C=AC=2,AB=BC,AB⊥BC,O是AC中点.(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求直线BC1与底面ABC所成角的正弦值.
【答案】分析:(1)由AA1=A1C=AC,知△AA1C是等边三角形,由O是AC中点,知A1O⊥AC,由此能够证明A1O⊥面ABC.
(2)作C1E⊥AC,交AC的延长线于点E,连接BE,则C1E∥A1O,从而得到C1E⊥面ABC,∠C1BE就是直线BC1与底面ABC所成角.由此能求出直线BC1与底面ABC所成角的正弦值.
解答:(1)证明:∵AA1=A1C=AC,∴△AA1C是等边三角形,
∵O是AC中点,∴A1O⊥AC,
∵AC是面AA1C1C和面ABC的交线,且面AA1C1C⊥面ABC,
又∵A1O?面AA1C1C,
∴A1O⊥面ABC.
(2)解:作C1E⊥AC,交AC的延长线于点E,连接BE,
则C1E∥A1O,∴C1E⊥面ABC,
∴∠C1BE就是直线BC1与底面ABC所成角.
∵四边形AA1C1C为平行四边形,且面AA1C1C⊥面ABC,
AA1=A1C=AC=2,AB=BC,AB⊥BC,O是AC中点.
∴C1E=A1O=
,AB=BC=
,
∴C1O=
=
,BO=1,
∴BC1=
=2
,
∴sin∠C1BE=
=
=
.
点评:本题考查直线与平面垂直的证明,考查直线与平面所成角的正弦值的求法,解题时要认真审题,注意等价转化思想的合理运用.
(2)作C1E⊥AC,交AC的延长线于点E,连接BE,则C1E∥A1O,从而得到C1E⊥面ABC,∠C1BE就是直线BC1与底面ABC所成角.由此能求出直线BC1与底面ABC所成角的正弦值.
解答:(1)证明:∵AA1=A1C=AC,∴△AA1C是等边三角形,
∵O是AC中点,∴A1O⊥AC,
∵AC是面AA1C1C和面ABC的交线,且面AA1C1C⊥面ABC,
又∵A1O?面AA1C1C,
∴A1O⊥面ABC.
(2)解:作C1E⊥AC,交AC的延长线于点E,连接BE,
则C1E∥A1O,∴C1E⊥面ABC,
∴∠C1BE就是直线BC1与底面ABC所成角.
∵四边形AA1C1C为平行四边形,且面AA1C1C⊥面ABC,
AA1=A1C=AC=2,AB=BC,AB⊥BC,O是AC中点.
∴C1E=A1O=
∴C1O=
∴BC1=
∴sin∠C1BE=
点评:本题考查直线与平面垂直的证明,考查直线与平面所成角的正弦值的求法,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目