题目内容

8.已知在△ABC中,内角A、B、C的对边分别为a,b,c,且b=$\sqrt{2}$a,$\sqrt{3}$cosB=$\sqrt{2}$cosA,c=$\sqrt{3}$+1,则△ABC的面积为$\frac{\sqrt{3}+1}{2}$.

分析 由已知可求sinB=$\sqrt{2}$sinA,cosB=$\frac{\sqrt{2}}{\sqrt{3}}$cosA,利用同角三角函数基本关系式可求cosA,cosB,进而可求A,B,C的值,由余弦定理c2=a2+b2-2abcosC,可得a,进而利用三角形面积公式即可计算得解.

解答 解:∵由b=$\sqrt{2}$a,可得:sinB=$\sqrt{2}$sinA,
由$\sqrt{3}$cosB=$\sqrt{2}$cosA,可得:cosB=$\frac{\sqrt{2}}{\sqrt{3}}$cosA,
∴($\sqrt{2}$sinA)2+($\frac{\sqrt{2}}{\sqrt{3}}$cosA)2=1,解得:sin2A+$\frac{1}{3}$cos2A=$\frac{1}{2}$,
∴结合sin2A+cos2A=1,可得:cosA=$\frac{\sqrt{3}}{2}$,cosB=$\frac{\sqrt{2}}{2}$,
∴A=$\frac{π}{6}$,B=$\frac{π}{4}$,可得:C=π-A-B=$\frac{7π}{12}$,
∴由余弦定理c2=a2+b2-2abcosC,可得:($\sqrt{3}+1$)2=a2+($\sqrt{2}a$)2-2α×$\sqrt{2}$a×cos$\frac{7π}{12}$,
∴解得:a=$\sqrt{2}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×\sqrt{2}×$($\sqrt{3}+1$)×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{3}+1}{2}$.
故答案为:$\frac{\sqrt{3}+1}{2}$.

点评 本题主要考查了正弦定理,同角三角函数基本关系式,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网