题目内容
计算
=______.
| lim |
| n→∞ |
| 2n2+1 |
| 1+2+…+n |
∵1+2+3+…+n=
;
∴
=
=
;
∴
=
=4.
故答案为4.
| n(n+1) |
| 2 |
∴
| 2n2+1 |
| 1+2+3+…+n |
| 4n2+2 |
| n2+n |
4+
| ||
1+
|
∴
| lim |
| n→∞ |
| 2n2+1 |
| 1+2+…+n |
| lim |
| n→∞ |
4+
| ||
1+
|
故答案为4.
练习册系列答案
相关题目