ÌâÄ¿ÄÚÈÝ
20£®¸ø³öÏÂÁÐËĸöÃüÌ⣺¢ÙÃüÌâ¡°?x¡ÊR£¬x2£¾0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬x2¡Ü0¡±£»
¢Úº¯Êýy=f£¨x£©µÄ¶¨ÒåÓòΪ£¨-¡Þ£¬-1£©¡È£¨1£¬+¡Þ£©£¬ÆäͼÏóÉÏÈÎÒ»µãP£¨x£¬y£©Âú×ãx2-y2=1£¬Ôòº¯Êýy=f£¨x£©¿ÉÄÜÊÇÆæº¯Êý£»
¢ÛÈôa£¬b¡Ê[0£¬1]£¬Ôò²»µÈʽa2+b2£¼$\frac{1}{4}$³ÉÁ¢µÄ¸ÅÂÊÊÇ$\frac{¦Ð}{4}$
¢Üº¯Êýy=log2£¨x2-ax+2£©ÔÚ[2£¬+¡Þ£©ºãΪÕý£¬Ôò ʵÊýaµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬$\frac{5}{2}$£©£®
ÆäÖÐÕæÃüÌâµÄÐòºÅÊǢ٢ڢܣ®£¨ÇëÌîÉÏËùÓÐÕæÃüÌâµÄÐòºÅ£©
·ÖÎö ¢Ù¸ù¾Ýº¬ÓÐÁ¿´ÊµÄÃüÌâµÄ·ñ¶¨½øÐÐÅжϣ®
¢Ú¸ù¾Ýº¯ÊýÆæÅ¼ÐԵ͍ÒåºÍÐÔÖʽáºÏË«ÇúÏßµÄͼÏó½øÐÐÅжϣ®
¢Û¸ù¾Ý¼¸ºÎ¸ÅÐ͵ĸÅÂʹ«Ê½½øÐÐÅжϣ®
¢ÜÀûÓò»µÈʽºã³ÉÁ¢£¬ÀûÓòÎÊý·ÖÀë·¨½øÐÐÇó½âÅжϼ´¿É£®
½â´ð
½â£º¢ÙÃüÌâ¡°?x¡ÊR£¬x2£¾0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬x2¡Ü0¡±£»¹Ê¢ÙÕýÈ·£¬
¢Úº¯Êýy=f£¨x£©µÄ¶¨ÒåÓòΪ£¨-¡Þ£¬-1£©¡È£¨1£¬+¡Þ£©£¬ÆäͼÏóÉÏÈÎÒ»µãP£¨x£¬y£©Âú×ãx2-y2=1£¬Ôòº¯Êýy=f£¨x£©¿ÉÄÜÊÇÆæº¯Êý£»ÕýÈ·£¬µ±µãPµÄ×ø±êÂú×ãy=$\left\{\begin{array}{l}{\sqrt{{x}^{2}-1}}&{x£¼-1}\\{-\sqrt{{x}^{2}-1}}&{x£¾1}\end{array}\right.$ʱ£¬º¯Êýf£¨x£©ÎªÆæº¯Êý£®¹Ê¢ÚÕýÈ·£¬
¢ÛÈôa£¬b¡Ê[0£¬1]£¬Ôò²»µÈʽ${a^2}+{b^2}£¼\frac{1}{4}$³ÉÁ¢µÄ¸ÅÂÊÊÇ$P=\frac{{\frac{1}{4}¡Á¦Ð¡Á{{£¨{\frac{1}{2}}£©}^2}}}{1¡Á1}=\frac{¦Ð}{16}$£®Èçͼ£®ËùÒÔ¢Û´íÎó
¢ÜÒòΪº¯Êýy=log2£¨x2-ax+2£©ÔÚ[2£¬+¡Þ£©ÉϺãΪÕý£¬
ËùÒÔÔÚ[2£¬+¡Þ£©ÉÏx2-ax+2£¾1ºã³ÉÁ¢£¬
¼´£ºÔÚ[2£¬+¡Þ£©ÉÏ$a£¼x+\frac{1}{x}$ºã³ÉÁ¢£¬
Áî$g£¨x£©=x+\frac{1}{x}$£¬$g¡ä£¨x£©=1-\frac{1}{{x}^{2}}$
ÒòΪx¡Ý2£¬ËùÒÔ$g¡ä£¨x£©=1-\frac{1}{{x}^{2}}£¾0$£¬
ËùÒÔg£¨x£©ÔÚ[2£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬
ËùÒÔ£ºµ±x=2ʱ£¬g£¨x£©µÄ×îСֵΪg£¨2£©=$\frac{5}{2}$£¬
ËùÒÔ$a£¼\frac{5}{2}$£®ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬$\frac{5}{2}$£©£®¹Ê¢ÜÕýÈ·£¬
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü
µãÆÀ ±¾Ì⿼²é¸÷ÖÖÃüÌâµÄÕæ¼ÙÅжϣ¬ÕýÈ·ÀûÓÃÏà¹ØÖªÊ¶½øÐÐÍÆÀí£¬ÒªÇóÊìÁ·½øÐÐÓ¦Óã®
| A£® | 252 | B£® | -252 | C£® | 160 | D£® | -160 |
| A£® | ×îСֵΪ-1£¬²»´æÔÚ×î´óÖµ | B£® | ×îСֵΪ2£¬²»´æÔÚ×î´óÖµ | ||
| C£® | ×î´óֵΪ-1£¬²»´æÔÚ×îСֵ | D£® | ×î´óֵΪ2£¬²»´æÔÚ×îСֵ |
| A£® | $\frac{5}{2}$ | B£® | 2 | C£® | $\frac{\sqrt{10}}{4}$ | D£® | $\frac{\sqrt{10}}{2}$ |