题目内容
12.已知实数x,y满足$\left\{{\begin{array}{l}{2x+y≥4}\\{x-y≥-1}\\{x-2y≤2}\end{array}}\right.$,则z=x-y( )| A. | 最小值为-1,不存在最大值 | B. | 最小值为2,不存在最大值 | ||
| C. | 最大值为-1,不存在最小值 | D. | 最大值为2,不存在最小值 |
分析 作出不等式组对应的平面区域,利用z的几何意义进行求解即可.
解答
解:作出不等式组对应的平面区域如图:
由z=x-y,得y=x-z表示,斜率为1纵截距为-z的一组平行直线,
平移直线y=x-z,当直线y=x-z经过点A时,即和直线AD:x-y=-1平行时,直线y=x-z的截距最大,此时z最小,最小为-1,
无最大值,
故选:A.
点评 本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.
练习册系列答案
相关题目
2.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪70元,每单抽成2元; 乙公司无底薪,40单以内(含 40 单)的部分每单抽成4元,超出 40 单的部分每单抽成6元.假设同一公司的送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如下频数表:
甲公司送餐员送餐单数频数表
乙公司送餐员送餐单数频数表
(Ⅰ)现从甲公司记录的这100天中随机抽取两天,求这两天送餐单数都大于40的概率;
(Ⅱ)若将频率视为概率,回答以下问题:
(ⅰ)记乙公司送餐员日工资X(单位:元),求X的分布列和数学期望;
(ⅱ)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.
甲公司送餐员送餐单数频数表
| 送餐单数 | 38 | 39 | 40 | 41 | 42 |
| 天数 | 20 | 40 | 20 | 10 | 10 |
| 送餐单数 | 38 | 39 | 40 | 41 | 42 |
| 天数 | 10 | 20 | 20 | 40 | 10 |
(Ⅱ)若将频率视为概率,回答以下问题:
(ⅰ)记乙公司送餐员日工资X(单位:元),求X的分布列和数学期望;
(ⅱ)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.
3.班主任为了对本班学生的考试成绩进行分折,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
(I)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(Ⅱ)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如表:
(i)若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;
(ii)根据上表数据,求物理成绩y关于数学成绩x的线性回归方程(系数精确到0.01);
若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?
附:回归直线的方程是:$\widehat{y}=bx+a$,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}-b\overline{x}$.
(I)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(Ⅱ)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如表:
| 学生序号i | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 数学成绩xi | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
| 物理成绩yi | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
(ii)根据上表数据,求物理成绩y关于数学成绩x的线性回归方程(系数精确到0.01);
若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?
附:回归直线的方程是:$\widehat{y}=bx+a$,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}-b\overline{x}$.
| $\overline{x}$ | $\overline{y}$ | $\sum_{i=1}^{7}({x}_{i}-\overline{x})^{2}$ | $\sum_{i=1}^{7}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$ |
| 76 | 83 | 812 | 526 |
17.给出下列命题,其中正确的命题为( )
| A. | 若直线a和b共面,直线b和c共面,则a和c共面 | |
| B. | 直线a与平面α不垂直,则a与平面α内所有的直线都不垂直 | |
| C. | 直线a与平面α不平行,则a与平面α内的所有直线都不平行 | |
| D. | 异面直线a、b不垂直,则过a的任何平面与b都不垂直 |
4.某班有男生26人,女生24人,从中选一位同学为数学科代表,则不同选法的种数是( )
| A. | 50 | B. | 26 | C. | 24 | D. | 616 |
1.设集合A={x|x≥-1},B={x|y=$\sqrt{3{x}^{2}+5x-2}$},则A∩∁RB等于( )
| A. | {x|-1≤x$<\frac{1}{3}$} | B. | {x|-$\frac{1}{3}<x<2$} | C. | {x|-1$≤x≤\frac{1}{3}$} | D. | {x|-$\frac{1}{3}≤x≤2$} |