题目内容

已知F是抛物线C:y2=4x的焦点,直线l:y=k(x+1)与抛物线C交于A,B两点,记直线FA,FB的斜率分别为k1,k2,则k1+k2=______.
由y2=4x,得抛物线焦点F(1,0),
联立
y=k(x+1)
y2=4x
,得k2x2+(2k-4)x+k2=0.
设A(x1,y1),B(x2,y2),
x1+x2=
4-2k
k2
x1x2=1

k1+k2=
y1
x1-1
+
y2
x2-1
=
k(x1+1)(x2-1)+k(x2+1)(x1-1)
(x1-1)(x2-1)
=
2k(x1x2-1)
(x1-1)(x2-1)
=
2k(1-1)
(x1-1)(x2-1)
=0

故答案为0.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网