题目内容
已知F是抛物线C:y2=4x的焦点,直线l:y=k(x+1)与抛物线C交于A,B两点,记直线FA,FB的斜率分别为k1,k2,则k1+k2=______.
由y2=4x,得抛物线焦点F(1,0),
联立
,得k2x2+(2k-4)x+k2=0.
设A(x1,y1),B(x2,y2),
则x1+x2=
,x1x2=1.
k1+k2=
+
=
=
=
=0.
故答案为0.
联立
|
设A(x1,y1),B(x2,y2),
则x1+x2=
| 4-2k |
| k2 |
k1+k2=
| y1 |
| x1-1 |
| y2 |
| x2-1 |
| k(x1+1)(x2-1)+k(x2+1)(x1-1) |
| (x1-1)(x2-1) |
| 2k(x1x2-1) |
| (x1-1)(x2-1) |
| 2k(1-1) |
| (x1-1)(x2-1) |
故答案为0.
练习册系列答案
相关题目