题目内容
已知F为抛物线C:y=x2的焦点,A(x1,y1),B(x2,y2)是抛物线C上的两点,且x1<x2.(1)若
| FA |
| FB |
(2)若直线AB与抛物线C所围成的面积为
| 4 |
| 3 |
分析:(1)由题知,先写出抛物线C的焦点坐标,利用题中向量条件得出A,B两点坐标的关系式,从而写出直线AB的方程为y=kx+
,再利用定积分求出直线AB与抛物线C所围的面积的表达式,最后利用基本不等式求其最小值即可;
(2)先由题知A(x1,x12),B(x2,x22),且x1<x2,写出直线AB的方程为y-x12=k(x-x1),即y=(x1+x2)x-x1x2,再利用定积分求出直线AB与抛物线C所围的面积得到关于x1,
x2的方程,最终消去x1,x2得出点M的轨迹方程.
| 1 |
| 4 |
(2)先由题知A(x1,x12),B(x2,x22),且x1<x2,写出直线AB的方程为y-x12=k(x-x1),即y=(x1+x2)x-x1x2,再利用定积分求出直线AB与抛物线C所围的面积得到关于x1,
x2的方程,最终消去x1,x2得出点M的轨迹方程.
解答:解:(1)由题知,抛物线C的焦点F(0,
),A(x1,
),B(x2,
),所以
=(x1,
-
),
=(x2,
-
).
因为
=λ
,所以
=λ
共线,即
x1(
-
)-x2(
-
)=0,
即(x2-x1)(x1x2+
)=0.
因为x1<x2,所以x1x2=-
.(2分)
由题设条件x1<x2知,直线AB的斜率k一定存在,且
k=
=
=x1+x2.(3分)
设直线AB的方程为y=kx+
,则直线AB与抛物线C所围的面积
S=
(kx+
-x2)dx=(-
x3+
•x2+
x)
=(-
+
•
+
x2)-(-
+
•
+
x1)
=-
(
-
)+
(
-
)+
(x2-x1)
=(x2-x1)[-
(
+x2x1+
)+
(x2+x1)+
]
=
[-
(x2+x1)2+
x2x1+
(x2+x1)+
]
=
[-
k2-
×
+
•k+
]
=
(k2+1)
≥
,
当且仅当k=0,即x1=-x2,即λ=-1时,Smin=
.(5分)
(2)由题知A(x1,x12),B(x2,x22),且x1<x2,则直线AB的斜率kAB=
=
=x1+x2.
设直线AB的方程为y-x12=k(x-x1),即y=(x1+x2)x-x1x2,
则直线AB与抛物线C所围的面积
S=
[(x1+x2)x-x1x2-x2]dx
=(
•x2-x1x2x-
x3)
=
(x2-x1)3,
因为S=
,所以
(x2-x1)3=
,得x2-x1=2.(8分)设M(x,y),则x=
=x1+1,
y=
=
=
+2x1+2=(x1+1)2+1,
所以y=x2+1.
故点M的轨迹方程为y=x2+1.(10分)
| 1 |
| 4 |
| x | 2 1 |
| x | 2 2 |
| FA |
| x | 2 1 |
| 1 |
| 4 |
| FB |
| x | 2 2 |
| 1 |
| 4 |
因为
| FA |
| FB |
| FA |
| FB |
x1(
| x | 2 2 |
| 1 |
| 4 |
| x | 2 1 |
| 1 |
| 4 |
即(x2-x1)(x1x2+
| 1 |
| 4 |
因为x1<x2,所以x1x2=-
| 1 |
| 4 |
由题设条件x1<x2知,直线AB的斜率k一定存在,且
k=
| y2-y1 |
| x2-x1 |
| ||||
| x2-x1 |
设直线AB的方程为y=kx+
| 1 |
| 4 |
S=
| ∫ | x2 x1 |
| 1 |
| 4 |
| 1 |
| 3 |
| k |
| 2 |
| 1 |
| 4 |
| | | x2 x1 |
=(-
| 1 |
| 3 |
| x | 3 2 |
| k |
| 2 |
| x | 2 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| x | 3 1 |
| k |
| 2 |
| x | 2 1 |
| 1 |
| 4 |
=-
| 1 |
| 3 |
| x | 3 2 |
| x | 3 1 |
| k |
| 2 |
| x | 2 2 |
| x | 2 1 |
| 1 |
| 4 |
=(x2-x1)[-
| 1 |
| 3 |
| x | 2 2 |
| x | 2 1 |
| k |
| 2 |
| 1 |
| 4 |
=
| (x2+x1)2-4x2x1 |
| 1 |
| 3 |
| 1 |
| 3 |
| k |
| 2 |
| 1 |
| 4 |
=
| k2+1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| k |
| 2 |
| 1 |
| 4 |
=
| 1 |
| 6 |
| k2+1 |
| 1 |
| 6 |
当且仅当k=0,即x1=-x2,即λ=-1时,Smin=
| 1 |
| 6 |
(2)由题知A(x1,x12),B(x2,x22),且x1<x2,则直线AB的斜率kAB=
| y2-y1 |
| x2-x1 |
| ||||
| x2-x1 |
设直线AB的方程为y-x12=k(x-x1),即y=(x1+x2)x-x1x2,
则直线AB与抛物线C所围的面积
S=
| ∫ | x2 x1 |
=(
| x1+x2 |
| 2 |
| 1 |
| 3 |
| | | x2 x1 |
| 1 |
| 6 |
因为S=
| 4 |
| 3 |
| 1 |
| 6 |
| 4 |
| 3 |
| x1+x2 |
| 2 |
y=
| y1+y2 |
| 2 |
| ||||
| 2 |
| x | 2 1 |
所以y=x2+1.
故点M的轨迹方程为y=x2+1.(10分)
点评:本小题主要考查定积分在求面积中的应用、直线与圆锥曲线的综合问题、基本不等式等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关题目