题目内容
(2013•贵阳二模)已知F是抛物线C:y2=4x的焦点,直线l:y=k(x+1)与抛物线C交于A,B两点,记直线FA,FB的斜率分别为k1,k2,则k1+k2的值等于( )
分析:联立直线方程、抛物线方程消掉y得x的二次方程,设A(x1,y1),B(x2,y2),由斜率公式可表示出k1+k2,变形后代人韦达定理即可求得答案.
解答:解:由
,得k2x2+(2k2-4)x+k2=0(k≠0),
设A(x1,y1),B(x2,y2),
则x1+x2=-2+
,x1x2=1,
又F(1,0),
所以k1+k2=
+
=
+
=
=
=0,
故选C.
|
设A(x1,y1),B(x2,y2),
则x1+x2=-2+
| 4 |
| k2 |
又F(1,0),
所以k1+k2=
| y1 |
| x1-1 |
| y2 |
| x2-1 |
| k(x1+1) |
| x1-1 |
| k(x2+1) |
| x2-1 |
| k(2x1x2-2) |
| (x1-1)(x2-1) |
| k(2-2) |
| (x1-1)(x2-1) |
故选C.
点评:本题考查直线方程、抛物线方程及其位置关系,考查直线的斜率公式及韦达定理,考查方程思想.
练习册系列答案
相关题目