题目内容
已知锐角△ABC内有一点O,满足OA=OB=OC,且∠A=60°,若
+
=2m
,则m等于( )
| cosB |
| sinC |
| AB |
| cosC |
| sinB |
| AC |
| AO |
分析:把已知式两边同时乘以
,设 OA=OB=OC=R,由于∠AOB=2C,∠AOC=2B,可得
R 2(cos2C-1)+
R 2 (cos2B-1)=-2mR2,由 m=sinBcosC+sinCcosB=sin(B+C)=sinA 求得结果.
| OA |
| cosB |
| sinC |
| cosC |
| sinB |
解答:解:∵
+
=2m
,
∴
(
-
)+
(
-
)=2m
,
两边同时乘以
可得
(
-
)•
+
(
-
)•
=2m
•
.
设 OA=OB=OC=R,由于∠AOB=2C,∠AOC=2B,
∴
R 2(cos2C-1)+
R 2 (cos2B-1)=-2mR2,
∴m=sinBcosC+sinCcosB=sin(B+C)=sinA=
,
故选B.
| cosB |
| sinC |
| AB |
| cosC |
| sinB |
| AC |
| AO |
∴
| cosB |
| sinC |
| OB |
| OA |
| cosC |
| sinB |
| OC |
| OA |
| AO |
两边同时乘以
| OA |
| cosB |
| sinC |
| OB |
| OA |
| OA |
| cosC |
| sinB |
| OC |
| OA |
| OA |
| AO |
| OA |
设 OA=OB=OC=R,由于∠AOB=2C,∠AOC=2B,
∴
| cosB |
| sinC |
| cosC |
| sinB |
∴m=sinBcosC+sinCcosB=sin(B+C)=sinA=
| ||
| 2 |
故选B.
点评:本题主要考查两个向量的加减法的法则,以及其几何意义,诱导公式的应用,属于中档题.
练习册系列答案
相关题目