题目内容

14.已知正实数m,n满足m+n+$\sqrt{{m}^{2}+{n}^{2}}$=2,则mn的最大值为(  )
A.6-3$\sqrt{2}$B.2C.6-4$\sqrt{2}$D.3

分析 根据基本不等式的性质得到$\sqrt{mn}$≤$\frac{2}{2+\sqrt{2}}$,解出即可.

解答 解:∵正实数m,n满足m+n+$\sqrt{{m}^{2}+{n}^{2}}$=2,
∴2$\sqrt{mn}$+$\sqrt{2mn}$≤2,
则(2+$\sqrt{2}$)$\sqrt{mn}$≤2,
故$\sqrt{mn}$≤$\frac{2}{2+\sqrt{2}}$=2-$\sqrt{2}$,
故mn≤${(2-\sqrt{2})}^{2}$=6-4$\sqrt{2}$,
当且仅当m=n时“=“成立,
故选:C.

点评 本题考查了基本不等式的性质,考查解不等式问题,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网