题目内容
设函数y=x3与y=(
)x-2的图象的交点为(x0,y0),则x0所在的区间是( )
| 1 |
| 2 |
| A、(0,1) |
| B、(1,2) |
| C、(2,3) |
| D、(3,4) |
分析:根据y=x3与y=(
)x-2的图象的交点的横坐标即为g(x)=x3-22-x的零点,将问题转化为确定函数g(x)=x3-22-x的零点的所在区间的问题,再由函数零点的存在性定理可得到答案.
| 1 |
| 2 |
解答:解:∵y=(
)x-2=22-x
令g(x)=x3-22-x,可求得:g(0)<0,g(1)<0,g(2)>0,g(3)>0,g(4)>0,
易知函数g(x)的零点所在区间为(1,2).
故选B.
| 1 |
| 2 |
令g(x)=x3-22-x,可求得:g(0)<0,g(1)<0,g(2)>0,g(3)>0,g(4)>0,
易知函数g(x)的零点所在区间为(1,2).
故选B.
点评:本题主要考查函数的零点和方程的根的关系和零点存在性定理.考查考生的灵活转化能力和对零点存在性定理的理解.
练习册系列答案
相关题目
设函数y=x3与y=(
)x-2的交点横坐标为x0,则x0所在的区间是( )
| 1 |
| 2 |
| A、(0,1) |
| B、(1,2) |
| C、(2,3) |
| D、(3,4) |