题目内容
3.已知函数y=Atan(ωx+$\frac{π}{4}$)(ω>0,A>0)经过点($\frac{π}{4}$,-3)和($\frac{π}{2}$,3).则A=3,ω=2.分析 由函数图象的对称性可得函数经过($\frac{3π}{8}$,0),代点可得ω,进而可得A值.
解答 解:由$\frac{1}{2}$($\frac{π}{4}$+$\frac{π}{2}$)=$\frac{3π}{8}$和函数图象的对称性可知函数经过($\frac{3π}{8}$,0),
∴Atan(ω•$\frac{3π}{8}$+$\frac{π}{4}$)=0,即ω•$\frac{3π}{8}$+$\frac{π}{4}$=kπ,解得ω=$\frac{8}{3}$k-$\frac{2}{3}$,k∈Z,
由ω>0可得当k=1时,ω=2,
∵y=Atan(ωx+$\frac{π}{4}$)(ω>0,A>0)经过点($\frac{π}{4}$,-3)和($\frac{π}{2}$,3),
∴Atan($\frac{π}{4}$ω+$\frac{π}{4}$)=-3,Atan($\frac{π}{2}$ω+$\frac{π}{4}$)=3,
∴Atan($\frac{π}{4}$•2+$\frac{π}{4}$)=-3,Atan($\frac{π}{2}$•2+$\frac{π}{4}$)=3,
解得A=3,
故答案为:3;2.
点评 本题考查正切函数的图象和性质,涉及函数图象的对称性,属中档题.
练习册系列答案
相关题目
13.若复数z满足$\frac{z}{1-i}=i$,其中i为复数单位,则z=( )
| A. | 1-i | B. | 1+i | C. | -1-i | D. | -1+i |
14.秦九韶是我国古代数学家的杰出代表,他将一元n(n∈N*)次多项式的求值问题转化为n个一次式的算法叫秦九韶算法.如果没有秦九韶算法,人们在编程求axn(a≠0,1)值时需要设计n次乘法运算,现在利用秦九韶算法编程求f(x)=(n+1)xn+nxn-1+…+2x+1,当x=0.2的值时,所需乘法运算的次数比没有秦九韶算法所需乘法运算的次数少了( )
| A. | $\frac{{n}^{2}+n}{2}$ | B. | $\frac{{n}^{2}-n}{2}$ | C. | $\frac{{n}^{2}+n-2}{2}$ | D. | n |
11.若直线mx-y-1=0与直线x-2y+3=0垂直,则m的值为( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 2 | D. | -2 |