题目内容
5.在直角坐标系xOy中,圆C的参数方程$\left\{\begin{array}{l}x=1+cosφ\\ y=sinφ\end{array}\right.(φ$为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是$ρ(sinθ+\sqrt{3}cosθ)=3\sqrt{3}$,射线$OM:θ={θ_1}(0<{θ_1}<\frac{π}{2})$与圆C的交点为O,P,与直线l的交点为Q,求|OP|•|OQ|的范围.
分析 (1)圆C的参数方程消去参数φ,能求出圆C的普通方程,再由x=ρcosθ,y=ρsinθ,能求出圆C的极坐标方程.
(2)设P(ρ1,θ1),则有ρ1=cosθ1,Q(ρ2,θ1),则${ρ_2}=\frac{{3\sqrt{3}}}{{sin{θ_1}+\sqrt{3}cos{θ_1}}}$,|OP|•|OQ|=ρ1ρ2,结合tanθ1>0,能求出|OP|•|OQ|的范围.
解答 解:(1)∵圆C的参数方程$\left\{\begin{array}{l}x=1+cosφ\\ y=sinφ\end{array}\right.(φ$为参数),
∴消去参数φ,得圆C的普通方程是(x-1)2+y2=1,
又x=ρcosθ,y=ρsinθ,
∴圆C的极坐标方程是ρ=2cosθ.
(2)设P(ρ1,θ1),则有ρ1=2cosθ1,Q(ρ2,θ1),
则有${ρ_2}=\frac{{3\sqrt{3}}}{{sin{θ_1}+\sqrt{3}cos{θ_1}}}$,
∴$|{OP}||{OQ}|={ρ_1}•{ρ_2}=\frac{{6\sqrt{3}cos{θ_1}}}{{sin{θ_1}+\sqrt{3}cos{θ_1}}}=\frac{{6\sqrt{3}}}{{\sqrt{3}+tan{θ_1}}}(0<{θ_1}<\frac{π}{2})$,
∵tanθ1>0,∴0<|OP||OQ|<6.
故|OP|•|OQ|的范围是(0,6).
点评 本题考查圆的极坐标方程的求法,考查两线段的乘积的取值范围的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
练习册系列答案
相关题目
13.
如图,在长方体ABCD-A1B1C1D1中,O是DB的中点,直线A1C交平面C1BD于点M,则下列结论错误的是( )
| A. | C1,M,O三点共线 | B. | C1,M,O,C四点共面 | ||
| C. | C1,O,A1,M四点共面 | D. | D1,D,O,M四点共面 |