ÌâÄ¿ÄÚÈÝ
7£®ÒÑÖªÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tÊDzÎÊý£©£¬ÒÔOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC£º¦Ñ=2cos¦È£®£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±êϵ·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©Ö±ÏßlºÍxÖá½»ÓÚµãA£¬µãBÊÇÇúÏßCÉϵ͝µã£¬ÇóABµÄÖеãDµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óÖµ£®
·ÖÎö £¨1£©Ö±½Ó½áºÏÇúÏߵIJÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯¹«Ê½½øÐд¦Àí£¬È»ºó£¬¸ù¾Ý¼«×ø±ê·½³ÌºÍÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¹«Ê½½øÐд¦Àí£»
£¨2£©¿ÉÒÔ½èÖúÓÚÔ²µÄ²ÎÊý·½³Ì£¬²¢½áºÏÈý½Çº¯ÊýµÄÖµÓò½øÐд¦Àí¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tÊDzÎÊý£©£¬µÃ
x-y=4£¬
¹Ê¸ÃÖ±ÏߵįÕͨ·½³ÌΪ£ºx-y-4=0£¬
¸ù¾ÝÇúÏßC£º¦Ñ=2cos¦È£®µÃ
¦Ñ2=2¦Ñcos¦È£¬
¡àx2+y2=2x£¬
¡à£¨x-1£©2+y2=1£¬
ÇúÏßCµÄÖ±½Ç×ø±êϵ·½³Ì£¨x-1£©2+y2=1£®
£¨2£©¡ßÖ±ÏßlºÍxÖá½»ÓÚµãA£¬
¡àA£¨4£¬0£©£®ÉèµãB£¨1+cos¦È£¬sin¦È£©£¬
¡àD£¨$\frac{5+cos¦È}{2}$£¬$\frac{1}{2}$sin¦È£©£¬
¡àd=$\frac{\sqrt{2}}{2}•|\frac{5+cos¦È}{2}-\frac{1}{2}sin¦È-4|$
=$\frac{\sqrt{2}}{2}$•|$\frac{3}{2}$+$\frac{\sqrt{2}}{2}$sin£¨¦È-$\frac{¦Ð}{4}$£©|£¬
¡àdµÄ×î´óֵΪ£º$\frac{3\sqrt{2}}{4}$+$\frac{1}{2}$£®
µãÆÀ ±¾ÌâÖØµã¿¼²éÁ˲ÎÊý·½³ÌºÍÆÕͨ·½³Ì¡¢¼«×ø±ê·½³ÌºÍÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯½øÐÐÇó½â£¬¿¼²éÁËÈý½Çº¯ÊýµÄÖµÓòÎÊÌ⣬µÈ֪ʶ£¬ÊôÓÚ×ÛºÏÌâÄ¿£¬ÄѶÈÖеȣ®
| A£® | A£¨x+x0£©+B£¨y+y0£©+C=0 | B£® | A£¨x+x0£©+B£¨y+y0£©=0 | C£® | A£¨x-x0£©+B£¨y-y0£©+C=0 | D£® | A£¨x-x0£©+B£¨y-y0£©=0 |
| A£® | l?a | B£® | l¡Îa | C£® | lÓëaÏཻ | D£® | ÒÔÉ϶¼ÓпÉÄÜ |