题目内容

16.已知M(2,0),N(3,-2),点P在直线MN上,且|$\overrightarrow{MP}$|=3|$\overrightarrow{PN}$|,则点P的坐标为($\frac{11}{4}$,-$\frac{3}{2}$)或($\frac{7}{2}$,-3).

分析 设出点的坐标,由题意得到$\overrightarrow{MP}$=3$\overrightarrow{PN}$,或$\overrightarrow{MP}$=-3$\overrightarrow{PN}$,根据向量的共线即可求出.

解答 解:设点P(x,y),M(2,0),N(3,-2),
∴$\overrightarrow{MP}$=(x-2,y),$\overrightarrow{PN}$=(3-x,-2-y),
∵点P在直线MN上,且|$\overrightarrow{MP}$|=3|$\overrightarrow{PN}$|,
∴$\overrightarrow{MP}$=3$\overrightarrow{PN}$,或$\overrightarrow{MP}$=-3$\overrightarrow{PN}$,
即(x-2,y)=3(3-x,-2-y),或(x-2,y)=-3(3-x,-2-y),
即$\left\{\begin{array}{l}{x-2=9-3x}\\{y=-6-3y}\end{array}\right.$或$\left\{\begin{array}{l}{x-2=-9+3x}\\{y=6+3y}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=\frac{11}{4}}\\{y=-\frac{3}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{7}{2}}\\{y=-3}\end{array}\right.$,
∴点P的坐标为($\frac{11}{4}$,-$\frac{3}{2}$)或($\frac{7}{2}$,-3),
故答案为:($\frac{11}{4}$,-$\frac{3}{2}$)或($\frac{7}{2}$,-3),

点评 本题考查了平面向量的坐标运算问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网