ÌâÄ¿ÄÚÈÝ

1£®Èç¹û¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©£¬¶ÔÈÎÒâµÄx¡ÊR£¬¶¼ÓÐf£¨-x£©¡Ù-f£¨x£©£¬Ôò³Æ¸Ãº¯ÊýÊÇ¡°¦Âº¯Êý¡±£®
£¨¢ñ£© ·Ö±ðÅжÏÏÂÁк¯Êý£º¢Ùy=2x£»¢Úy=2x+1£» ¢Ûy=x2-2x-3£¬ÊÇ·ñΪ¡°¦Âº¯Êý¡±£¿£¨Ö±½Óд³ö½áÂÛ£©
£¨¢ò£© Èôº¯Êýf£¨x£©=sinx+cosx+aÊÇ¡°¦Âº¯Êý¡±£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ó£© ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}+1£¬x¡ÊA}\\{x£¬x¡ÊB}\end{array}\right.$ÊÇ¡°¦Âº¯Êý¡±£¬ÇÒÔÚRÉϵ¥µ÷µÝÔö£¬ÇóËùÓпÉÄܵļ¯ºÏAÓëB£®

·ÖÎö £¨¢ñ£©¸ù¾Ý¡°¦Âº¯Êý¡±µÄ¶¨ÒåÅж¨£®¢Ù¡¢¢ÚÊÇ¡°¦Â º¯Êý¡±£¬¢Û²»ÊÇ¡°¦Âº¯Êý¡±£»
£¨¢ò£©ÓÉÌâÒ⣬¶ÔÈÎÒâµÄx¡ÊR£¬f£¨-x£©+f£¨x£©¡Ù0£¬¹Êf£¨-x£©+f£¨x£©=2cosx+2a
ÓÉÌâÒ⣬¶ÔÈÎÒâµÄx¡ÊR£¬2cosx+2a¡Ù0£¬¼´a¡Ù-cosx¼´¿ÉµÃʵÊýaµÄȡֵ·¶Î§
£¨¢ó£©£¨1£©¶ÔÈÎÒâµÄx¡Ù0
·Ö£¨a£©Èôx¡ÊAÇÒ-x¡ÊA£¬£¨b£©Èôx¡ÊBÇÒ-x¡ÊB£¬ÑéÖ¤
£¨2£©¼ÙÉè´æÔÚx0£¼0£¬Ê¹µÃx0¡ÊA£¬ÔòÓÉx0£¼$\frac{{x}_{0}}{2}$£¬¹Êf£¨x0£©£¼f£¨$\frac{{x}_{0}}{2}$£©£®
£¨a£©Èô$\frac{{x}_{0}}{2}¡ÊA$£¬Ôòf£¨$\frac{{x}_{0}}{2}$£©=$\frac{{{x}_{0}}^{2}}{4}+1£¼{{x}_{0}}^{2}+1=f£¨{x}_{0}£©$£¬Ã¬¶Ü£¬
£¨b£©Èô$\frac{{x}_{0}}{2}¡ÊB$£¬Ôòf£¨$\frac{{x}_{0}}{2}$£©=$\frac{{x}_{0}}{2}£¼0£¼{{x}_{0}}^{2}+1=f£¨{x}_{0}£©$£¬Ã¬¶Ü£®
£¨3£©¼ÙÉè0¡ÊB£¬Ôòf£¨-0£©=-f£¨0£©=0£¬Ã¬¶Ü£®¹Ê0¡ÊA£¬¹ÊA=[0£¬+¡Þ£©£¬B=£¨-¡Þ£¬0£©£®

½â´ð ½â£º£¨¢ñ£©¢Ù¡¢¢ÚÊÇ¡°¦Â º¯Êý¡±£¬¢Û²»ÊÇ¡°¦Âº¯Êý¡±£®¡­£¨3·Ö£©
£¨¢ò£©ÓÉÌâÒ⣬¶ÔÈÎÒâµÄx¡ÊR£¬f£¨-x£©¡Ù-f£¨x£©£¬¼´f£¨-x£©+f£¨x£©¡Ù0£¬£®
ÒòΪf£¨x£©=sinx+cosx+a£¬ËùÒÔf£¨-x£©=-sinx+cosx+a£®
¹Êf£¨-x£©+f£¨x£©=2cosx+2a
ÓÉÌâÒ⣬¶ÔÈÎÒâµÄx¡ÊR£¬2cosx+2a¡Ù0£¬¼´a¡Ù-cosx£®¡­£¨6·Ö£©
¹ÊʵÊýaµÄȡֵ·¶Î§Îª£¨-¡Þ£¬-1£©¡È£¨1£¬+¡Þ£©£®¡­£¨8·Ö£©
£¨¢ó£©£¨1£©¶ÔÈÎÒâµÄx¡Ù0
£¨a£©Èôx¡ÊAÇÒ-x¡ÊA£¬Ôò-x¡Ùx£¬f£¨-x£©=f£¨x£©£¬ÕâÓëy=f£¨x£©ÔÚRÉϵ¥µ÷µÝÔöì¶Ü£¬£¨Éᣩ£¬
£¨b£©Èôx¡ÊBÇÒ-x¡ÊB£¬Ôòf-£¨x£©=-x=-f£¨x£©£¬ÕâÓëy=f£¨x£©ÊÇ¡°¦Âº¯Êý¡±Ã¬¶Ü£¬£¨Éᣩ£®
´Ëʱ£¬ÓÉy=f£¨x£©µÄ¶¨ÒåÓòΪR£¬¹Ê¶ÔÈÎÒâµÄx¡Ù0£¬xÓë-xÇ¡ÓÐÒ»¸öÊôÓÚA£¬ÁíÒ»¸öÊôÓÚB£®
£¨2£©¼ÙÉè´æÔÚx0£¼0£¬Ê¹µÃx0¡ÊA£¬ÔòÓÉx0£¼$\frac{{x}_{0}}{2}$£¬¹Êf£¨x0£©£¼f£¨$\frac{{x}_{0}}{2}$£©£®
£¨a£©Èô$\frac{{x}_{0}}{2}¡ÊA$£¬Ôòf£¨$\frac{{x}_{0}}{2}$£©=$\frac{{{x}_{0}}^{2}}{4}+1£¼{{x}_{0}}^{2}+1=f£¨{x}_{0}£©$£¬Ã¬¶Ü£¬
£¨b£©Èô$\frac{{x}_{0}}{2}¡ÊB$£¬Ôòf£¨$\frac{{x}_{0}}{2}$£©=$\frac{{x}_{0}}{2}£¼0£¼{{x}_{0}}^{2}+1=f£¨{x}_{0}£©$£¬Ã¬¶Ü£®
×ÛÉÏ£¬¶ÔÈÎÒâµÄx£¼0£¬x∉A£¬¹Êx¡ÊB£¬¼´£¨-¡Þ£¬0£©⊆B£¬Ôò£¨0£¬+¡Þ£©⊆A£®
£¨3£©¼ÙÉè0¡ÊB£¬Ôòf£¨-0£©=-f£¨0£©=0£¬Ã¬¶Ü£®¹Ê0¡ÊA
¹ÊA=[0£¬+¡Þ£©£¬B=£¨-¡Þ£¬0£©£®
¾­¼ìÑéA=[0£¬+¡Þ£©£¬B=£¨-¡Þ£¬0£©£®·ûºÏÌâÒâ   ¡­£¨13·Ö£©

µãÆÀ ±¾Ì⿼²éÁËж¨Ò庯Êý£¬ÅªÇ嶨Ò庬ÒåÊǹؼü£¬·ÖÎö·¨ÊDZ¾ÌâµÄ»ù±¾·½·¨£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø