题目内容

设f(x)=
1
2x+
2
,利用课本中推导等差数列前n项和的公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为______
∵f(x)=
1
2x+
2

∴f(x)+f(1-x)=
1
2x+
2
+
1
21-x+
2

=
1
2x+
2
+
2x
2+
2
×2x

=
2x+
2
2(2x+
2
=
2
2

即 f(-5)+f(6)=
2
2
,f(-4)+f(5)=
2
2
,f(-3)+f(4)=
2
2

f(-2)+f(3)=
2
2
,f(-1)+f(2)=
2
2
,f(0)+f(1)=
2
2

∴所求的式子值为3
2

故答案为:3
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网