题目内容

12.试用列举法表示集合M={x|x∈R,x>-1且$\frac{x+1}{{x}^{2}-3x+3}$∈Z}={2-$\sqrt{2}$,2+$\sqrt{2}$,1,$\frac{5}{2}$,2,$\frac{4}{3}$}.

分析 根据基本不等式,可求出$\frac{x+1}{{x}^{2}-3x+3}$∈(0,$\frac{2\sqrt{7}+5}{3}$],解方程求出满足条件的x值,可得答案.

解答 解:∵x>-1,
∴$x+1+\frac{7}{x+1}$≥2$\sqrt{7}$,
∴$\frac{x+1}{{x}^{2}-3x+3}$=$\frac{1}{x+1+\frac{7}{x+1}-5}$∈(0,$\frac{2\sqrt{7}+5}{3}$],
若$\frac{x+1}{{x}^{2}-3x+3}$∈Z,
则$\frac{x+1}{{x}^{2}-3x+3}$=1,或$\frac{x+1}{{x}^{2}-3x+3}$=2,或$\frac{x+1}{{x}^{2}-3x+3}$=3,
解得:x=2-$\sqrt{2}$,或x=2+$\sqrt{2}$,或x=1,或x=$\frac{5}{2}$,或x=2,或x=$\frac{4}{3}$,
故M={2-$\sqrt{2}$,2+$\sqrt{2}$,1,$\frac{5}{2}$,2,$\frac{4}{3}$},
故答案为:{2-$\sqrt{2}$,2+$\sqrt{2}$,1,$\frac{5}{2}$,2,$\frac{4}{3}$}

点评 本题考查的知识点是集合表示法,基本不等式,是集合和不等式的综合应用,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网