题目内容
求函数f(x)=sin2x+
sinxcosx在区间[
,
]上的最大值______.
| 3 |
| π |
| 4 |
| π |
| 2 |
∵f(x)=sin2x+
sinxcosx
=
+
sin2x
=sin(2x-
)+
.
又x∈[
,
],
∴2x-
∈[
,
],
∴sin(2x-
)∈[
,1],
∴sin(2x-
)+
∈[1,
].
即f(x)∈[1,
].
故f(x)在区间[
,
]上的最大值为
.
故答案为:
.
| 3 |
=
| 1-cos2x |
| 2 |
| ||
| 2 |
=sin(2x-
| π |
| 6 |
| 1 |
| 2 |
又x∈[
| π |
| 4 |
| π |
| 2 |
∴2x-
| π |
| 6 |
| π |
| 3 |
| 5π |
| 6 |
∴sin(2x-
| π |
| 6 |
| 1 |
| 2 |
∴sin(2x-
| π |
| 6 |
| 1 |
| 2 |
| 3 |
| 2 |
即f(x)∈[1,
| 3 |
| 2 |
故f(x)在区间[
| π |
| 4 |
| π |
| 2 |
| 3 |
| 2 |
故答案为:
| 3 |
| 2 |
练习册系列答案
相关题目