题目内容

6.连续抛掷同一颗均匀的骰子,令第i次得到的点数为ai,若存在正整数k,使a1+a2+…+ak=6,则称k为你的幸运数字.则你的幸运数字为3的概率$\frac{5}{108}$.

分析 设“连续抛掷k次骰子,和为6”为事件A,则它包含事件A1、A2,A3,其中A1:三次恰好均为2;A2:三次中恰好1,2,3各一次.A3:三次中有两次均为1,一次为4,A1,A2为互斥事件,由此能求出k=3的概率.

解答 解:设“连续抛掷k次骰子,和为6”为事件A,则它包含事件A1、A2,A3
其中A1:三次恰好均为2;A2:三次中恰好1,2,3各一次.A3:三次中有两次均为1,一次为4,
A1,A2为互斥事件,则k=3的概率:
PA)=PA1)+PA2)+P(A3)=${C}_{3}^{3}(\frac{1}{6})^{3}$+${C}_{3}^{1}•\frac{1}{6}•{C}_{2}^{1}•\frac{1}{6}•{C}_{1}^{1}•\frac{1}{6}$+${C}_{3}^{2}(\frac{1}{6})^{2}•\frac{1}{6}$=$\frac{5}{108}$,
故答案为:$\frac{5}{108}$

点评 本题考查概率的求法,解题时要认真审题,注意互斥事件概率加法公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网