题目内容
在四面体O-ABC中,| OA |
| a |
| OB |
| b |
| OC |
| c |
| OE |
分析:利用D为BC的中点,E为AD的中点,
=
(
+
),
=
(
+
),化简可得结果.
| OE |
| 1 |
| 2 |
| OA |
| OD |
| OD |
| 1 |
| 2 |
| OB |
| OC |
解答:解:在四面体O-ABC中,
=a,
=b,
=c,D为BC的中点,E为AD的中点,
∴
=
(
+
)=
+
=
+
×
(
+
)=
+
(
+
)=
+
+
,
故答案为:
+
+
.
| OA |
| OB |
| OC |
∴
| OE |
| 1 |
| 2 |
| OA |
| OD |
| ||
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| a |
| 1 |
| 2 |
| 1 |
| 2 |
| OB |
| OC |
| 1 |
| 2 |
| a |
| 1 |
| 4 |
| b |
| c |
| 1 |
| 2 |
| a |
| 1 |
| 4 |
| b |
| 1 |
| 4 |
| c |
故答案为:
| 1 |
| 2 |
| a |
| 1 |
| 4 |
| b |
| 1 |
| 4 |
| c |
点评:本题考查向量中点公式的应用,以及两个向量的加减法的法则和几何意义.
练习册系列答案
相关题目
在四面体O-ABC中,
=a,
=b,
=c,D为BC的中点,E为AD的中点,则
可表示为(用a,b、c表示). ( )
| OA |
| OB |
| OC |
| OE |
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|
| OA |
| a |
| OB |
| b |
| OC |
| c |
| AP |
| a |
| b |
| c |
A、-
| ||||||
B、-a+
| ||||||
C、a+
| ||||||
D、
|