题目内容
3.已知函数f(x)=2x-2-x,数列{an}满足f(log2an)=-2n.(1)求数列{an}的通项公式;
(2)求数列{an}中的最大的项.
分析 (1)由已知结合f(log2an)=-2n得到数列递推式,整理后求解关于an的一元二次方程得答案;
(2)直接利用作商法证明数列是递减数列,数列{an}的首项为最大项.
解答 解:f(log2an)=${2}^{lo{g}_{2}{a}_{n}}$-${2}^{-lo{g}_{2}{a}_{n}}$=${a}_{n}-\frac{1}{{a}_{n}}$,
∴${a}_{n}-\frac{1}{{a}_{n}}$=-2n,
∴${a}_{n}^{2}+2n{a}_{n}-1=0$
解得an=-n±$\sqrt{{n}^{2}+1}$,
∵an>0,
an=$\sqrt{{n}^{2}+1}-n$,n∈N*;
(2)$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{\sqrt{(n+1)^{2}}-(n+1)}{\sqrt{{n}^{2}+1}-n}$,
=$\frac{\sqrt{{n}^{2}+1}+n}{\sqrt{(n+1)^{2}+1}+(n+1)}$<1,
∴数列{an}中最大的项为首项,${a}_{1}=\sqrt{2}-1$.
点评 本题考查了数列的函数特性,考查了数列递推式,训练了利用作商法证明数列是递减数列,是中档题.
练习册系列答案
相关题目
13.一个均匀的正方体玩具的各个面上分别标有数字1,2,3,4,5,6,将这个玩具向上抛掷一次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过2,事件C表示向上的一面出现的点数不小于4,则( )
| A. | A与B是互斥而非对立事件 | B. | A与B是对立事件 | ||
| C. | B与C是互斥而非对立事件 | D. | B与C是对立事件 |
14.下列命题中真命题是( )
| A. | 若m⊥α,m?β,则α⊥β | |
| B. | 若m?α,n?α,m∥β,n∥β,则α∥β | |
| C. | 若m?α,n?α,m,n是异面直线,那么n与α相交 | |
| D. | 若α∩β=m,n∥m,则n∥α且n∥β |
15.设A,B是两个集合,则“x∈A”是“x∈(A∩B)”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
12.若$\frac{sinα}{sin\frac{α}{2}}$=$\frac{8}{5}$,则cosα的值是( )
| A. | $\frac{3}{5}$ | B. | $\frac{7}{50}$ | C. | $\frac{7}{25}$ | D. | -$\frac{7}{25}$ |