题目内容
【题目】现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥
,下部分的形状是正四棱柱
(如图所示),并要求正四棱柱的高
是正四棱锥的高
的4倍.
![]()
(1)若
则仓库的容积是多少?
(2)若正四棱锥的侧棱长为
,则当
为多少时,仓库的容积最大?
【答案】(1)312(2)![]()
【解析】
试题分析:(1)明确柱体与锥体积公式的区别,分别代入对应公式求解;(2)先根据体积关系建立函数解析式,
,然后利用导数求其最值.
试题解析:解:(1)由PO1=2知OO1=4PO1=8.
因为A1B1=AB=6,
所以正四棱锥P-A1B1C1D1的体积
正四棱柱ABCD-A1B1C1D1的体积
所以仓库的容积V=V锥+V柱=24+288=312(m3).
(2)设A1B1=a(m),PO1=h(m),则0<h<6,OO1=4h.连结O1B1.
因为在![]()
中,
所以
,即
于是仓库的容积
,
从而
.
令
,得
或
(舍).
当
时,
,V是单调增函数;
当
时,
,V是单调减函数.
故
时,V取得极大值,也是最大值.
因此,当
m时,仓库的容积最大.
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的. ![]()
(1)根据频率分布直方图计算各小长方形的宽度;
(2)估计该公司投入4万元广告费之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值)
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 2 | 3 | 2 | 7 |
表格中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为
,
.