题目内容
4.若抛物线y=$\frac{1}{4}$x2上一点P到焦点F的距离为5,则P点的坐标是( )| A. | (4,±4) | B. | (±4,4) | C. | (±$\frac{79}{16}$,$\frac{\sqrt{79}}{8}$) | D. | (±$\frac{\sqrt{79}}{8}$,$\frac{79}{16}$) |
分析 利用抛物线的性质,求出P的纵坐标,然后求解横坐标即可.
解答 解:抛物线y=$\frac{1}{4}$x2上一点P到焦点F的距离为5,可得抛物线的准线方程为:y=-1,
则P的纵坐标为:4,则x2=16,解得x=±4.
则P点的坐标是:(±4,4).
故选:B.
点评 本题考查抛物线的简单性质的应用,考查计算能力.
练习册系列答案
相关题目
14.设命题p:f(x)=lnx+x2+ax+1在(0,+∞)内单调递增,命题q:a≥-2,则p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分又不必要条件 |
15.已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4(m∈R),则直线l过的定点及直线与圆相交得的最短弦长分别为( )
| A. | (3,1),$4\sqrt{5}$ | B. | (2,1),$4\sqrt{5}$ | C. | (-3,1),$4\sqrt{3}$ | D. | (2,-1),3$\sqrt{3}$ |
12.在△ABC中,三个内角∠A,∠B,∠C所对的边分别为a,b,c,且A:B:C=1:2:3,则a:b:c=( )
| A. | 3:2:1 | B. | 2:$\sqrt{3}$:1 | C. | 1:2:3 | D. | 1:$\sqrt{3}$:2 |
19.已知函数$f(x)=\left\{\begin{array}{l}{x^2}-x,x≤0\\-{2^x},x>0\end{array}\right.$,则“f(x)≤0”是“x=0”的( )条件.
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
16.
如图是一名篮球运动员在最近6场比赛中所得分数的茎叶图,则下列关于该运动员所得分数的说法错误的是( )
| A. | 中位数为14 | B. | 众数为13 | C. | 平均数为15 | D. | 方差为19 |
14.下列关系中,正确的是( )
| A. | $\sqrt{2}$∈N | B. | $\frac{1}{2}$∈Z | C. | ∅?{0,1} | D. | $\frac{1}{2}$∉Q |