题目内容

已知数学公式,α,β为锐角,求sin(α-β),tan(α+2β).

解:∵cosα=,且α为锐角,
∴sinα==,故tanα=
又cosβ=,且β为锐角,
∴sinβ==,故tanβ=
∴sin(α-β)=sinαcosβ-cosαsinβ=×-×=
∴tan2β==
==-
分析:由cosα,cosβ的值,根据α,β为锐角,利用同角三角函数间的基本关系分别求出sinα,sinβ的值,从而求出tanα,tanβ的值,利用两角和与差的正弦函数公式化简sin(α-β),把各种的值代入即可求出值;由二倍角的正切函数公式化简tan2β,把tanβ的值代入求出值,最后利用两角和与差的正切函数公式化简tan(α+2β),把各自的值代入即可求出值.
点评:此题考查了同角三角函数间的基本关系,两角和与差的正弦、正切函数公式,以及二倍角的正切函数公式,熟练掌握公式是解本题的关键,同时注意角度的范围.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网