题目内容
已知cos(α+
)=
(α为锐角),则sinα=( )
| π |
| 6 |
| 4 |
| 5 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
分析:由于α∈(0,
),可得(α+
)∈(
,
).利用平方关系可得:sin(α+
)=
=
=
.再利用sinα=sin[(α+
)-
]即可得出.
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 2π |
| 3 |
| π |
| 6 |
1-cos2(α+
|
1-(
|
| 3 |
| 5 |
| π |
| 6 |
| π |
| 6 |
解答:解:∵α∈(0,
),∴(α+
)∈(
,
).
∴sin(α+
)=
=
=
.
∴sinα=sin[(α+
)-
]=sin(α+
)cos
-cos(α+
)sin
=
×
-
×
=
.
故选:D.
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 2π |
| 3 |
∴sin(α+
| π |
| 6 |
1-cos2(α+
|
1-(
|
| 3 |
| 5 |
∴sinα=sin[(α+
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 3 |
| 5 |
| ||
| 2 |
| 4 |
| 5 |
| 1 |
| 2 |
3
| ||
| 10 |
故选:D.
点评:本题考查了三角函数的平方关系、两角和差的正弦公式,属于基础题.
练习册系列答案
相关题目
已知cos(α-
)+sinα=
,则sin(α+
)的值是( )
| π |
| 6 |
| 4 |
| 5 |
| 3 |
| 7π |
| 6 |
A、-
| ||||
B、
| ||||
C、-
| ||||
D、
|