题目内容
3.已知数列{an}的通项an=log(n+1)(n+2),(n∈N*)我们把使乘积a1a2a3…an为整数的n叫做“优数”,则在(1,2016]内的所有“优数”的和为2026.分析 由题意可得,a1•a2…an=log23•log34•…•logn+1(n+2)=$\frac{lg3}{lg2}$×$\frac{lg4}{lg3}$×$\frac{lg5}{lg4}$×…×$\frac{lg(n+2)}{lg(n+1)}$=log2(n+2),若使log2(n+2)为整数,则n+2=2k,在(1,2010]内的所有整数可求,进而利用分组求和及等比数列的求和公式可求.
解答 解:∵an=logn+1(n+2)
∴a1•a2…an=log23•log34•…•logn+1(n+2)
=$\frac{lg3}{lg2}$×$\frac{lg4}{lg3}$×$\frac{lg5}{lg4}$×…×$\frac{lg(n+2)}{lg(n+1)}$=log2(n+2),
若使log2(n+2)为整数,则n+2=2k
在(1,2010]内的所有整数分别为:22-2,23-2,…,210-2
∴所求的数的和为22-2+23-2+…+210-2=$\frac{4(1-{2}^{9})}{1-2}$-2×9=2026
故答案为:2026.
点评 本题以新定义“优数”为切入点,主要考查了对数的换底公式及对数的运算性质的应用,属于中档试题.
练习册系列答案
相关题目
19.已知函数f(x)=sinωx-$\sqrt{3}$cosωx(ω>0)在(0,π)上有且只有两个零点,则实数ω的取值范围为( )
| A. | $({0,\frac{4}{3}}]$ | B. | $({\frac{4}{3},\frac{7}{3}}]$ | C. | $({\frac{7}{3},\frac{10}{3}}]$ | D. | $({\frac{10}{3},\frac{13}{3}}]$ |
11.设函数f(x)的定义域为R,f(x)=$\left\{\begin{array}{l}{-x,-1≤x≤0}\\{{3}^{x}-1,0<x<1}\end{array}\right.$,且对任意的x∈R都有f(x+1)=-$\frac{1}{f(x)}$,若在区间[-5,1]上函数g(x)=f(x)-mx+m恰有5个不同零点,则实数m的取值范围是( )
| A. | [-$\frac{1}{4}$,-$\frac{1}{6}$) | B. | (-$\frac{1}{2}$,-$\frac{1}{4}$] | C. | (-$\frac{1}{6}$,0] | D. | (-$\frac{1}{2}$,-$\frac{1}{6}$] |
8.与函数y=x相同的函数是( )
| A. | y=$\sqrt{{x}^{2}}$ | B. | y=$\frac{{x}^{2}}{x}$ | ||
| C. | y=($\sqrt{x}$)2 | D. | y=logaax(a>0且a≠1) |