题目内容
若数列{an}的通项公式是an=3-n+(-2)-n+1,则
(a1+a2+…+an)=______.
| lim |
| n→∞ |
a1+a2+…+an=(3-1+1)+[3-2+(-2)-1]+[3-3+(-2)-2]+…+[3-n+(-2)-n+1
=(3-1+3-2+…+3-n)+…+[1+(-2)-1+(-2)-2+…+(-2)-n+1]
=
+
=
+
,
所以
(a1+a2+…+an)=
[
+
]=
.
故答案为:
.
=(3-1+3-2+…+3-n)+…+[1+(-2)-1+(-2)-2+…+(-2)-n+1]
=
| 3-1(1-3-n) |
| 1-3-1 |
1•[1-(-
| ||
| 1-(-2)-1 |
1-
| ||
| 2 |
1-(-
| ||
|
所以
| lim |
| n→∞ |
| lim |
| n→∞ |
1-
| ||
| 2 |
1-(-
| ||
|
| 7 |
| 6 |
故答案为:
| 7 |
| 6 |
练习册系列答案
相关题目