题目内容
9.直线$\frac{x}{2}$-$\frac{y}{3}$=1在y轴上的截距是( )| A. | -3 | B. | 3 | C. | 2 | D. | -2 |
分析 根据题意,将直线的方程变形为截距式方程,分析解可得答案.
解答 解:根据题意,直线的方程为$\frac{x}{2}$-$\frac{y}{3}$=1,其截距式方程为$\frac{x}{2}$+$\frac{y}{-3}$=1,
则其在y轴上的截距是-3;
故选:A.
点评 本题考查直线的截距式方程,注意直线的截距式方程的标准形式.
练习册系列答案
相关题目
19.某城市理论预测2017年到2021年人口总数(单位:十万)与年份的关系如表所示:
(1)请根据上表提供的数据,用最小二乘法求出y关于x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)据此估计2022年该城市人口总数.
(附:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,a=$\overline{y}$-b$\overline{x}$)
考数据:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30.
| 年份2017+x | 0 | 1 | 2 | 3 | 4 |
| 人口总数y | 5 | 7 | 8 | 11 | 19 |
(2)据此估计2022年该城市人口总数.
(附:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,a=$\overline{y}$-b$\overline{x}$)
考数据:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30.
17.函数f(x)=a|x2-1|+x(x2-4)(a>0)在(-1,+∞)上( )
| A. | 零点的个数为1 | B. | 零点的个数为2 | ||
| C. | 零点的个数为3 | D. | 零点的个数与a的值有关 |
1.为迎接“义务教育均衡检查”,某校在初中三个年级中开展“义务教育均衡”知晓情况调查,其中初中一年级共500人,初中二年级共650人,初中三年级共450人,现用分层抽样的方式在初中三个年级中共抽取32名同学进行调查,则初中一年级应抽取的人数为( )
| A. | 13 | B. | 9 | C. | 10 | D. | 12 |
18.已知角α的终边过点P(-8m,-6sin30°),且cosα=-$\frac{4}{5}$,则m的值为( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | ±$\frac{1}{2}$ | D. | ±$\frac{\sqrt{3}}{2}$ |
19.已知正方体的8个顶点中,有4个为一侧面是等边三角形的正三棱锥的顶点,则这个正三棱锥与正方体的全面积之比可能为( )
| A. | $1:\sqrt{3}$ | B. | $1:\sqrt{2}$ | C. | $2:\sqrt{2}$ | D. | $3:\sqrt{6}$ |