题目内容

12.如图,在△ABC中,C=$\frac{π}{4}$,角B的平分线BD交AC于点D,设∠CBD=θ,其中θ是直线x-2y+3=0的倾斜角.
(1)求sinA;
(2)若$\overrightarrow{CA}$•$\overrightarrow{CB}$=28,求AB的长.

分析 (1)根据θ是直线x-2y+3=0的倾斜角,求出sinθ和cosθ的值,角B的平分线BD交AC于点D,利用二倍角公式求出cos∠ABC,即可求出sinA;
(2)根据正弦定理求出AC,BC的关系,利用向量的夹角公式求出AC,可得BC,正弦定理可得答案.

解答 解:(1)∵θ是直线x-2y+3=0的倾斜角,∴tanθ=$\frac{1}{2}$,
又θ∈(0,$\frac{π}{2}$),故sinθ=$\frac{1}{\sqrt{5}}$,cosθ=$\frac{2}{\sqrt{5}}$,
则sin∠ABC=sin2θ=2sinθcosθ=2×$\frac{1}{\sqrt{5}}$×$\frac{2}{\sqrt{5}}$=$\frac{4}{5}$,
∴cos∠ABC=2cos2θ-1=2×$\frac{4}{5}$-1=$\frac{3}{5}$,
sinA=sin[π-($\frac{π}{4}$+2θ)]=sin($\frac{π}{4}$+2θ)=$\frac{\sqrt{2}}{2}$(sin2θ+cos2θ)=$\frac{\sqrt{2}}{2}$•($\frac{3}{5}$+$\frac{4}{5}$)=$\frac{7\sqrt{2}}{10}$
(2)由正弦定理,得$\frac{BC}{sinA}$=$\frac{AC}{sin∠ABC}$,即$\frac{BC}{\frac{7\sqrt{2}}{10}}$=$\frac{AC}{\frac{4}{5}}$,
∴BC=$\frac{7\sqrt{2}}{8}$AC.
又$\overrightarrow{CA}$•$\overrightarrow{CB}$=$\frac{\sqrt{2}}{2}$|$\overrightarrow{CB}$|•|$\overrightarrow{CA}$|=28,∴|$\overrightarrow{CB}$|•|$\overrightarrow{CA}$|=28$\sqrt{2}$,
由上两式解得AC=4$\sqrt{2}$,
又由$\frac{AB}{sinC}$=$\frac{AC}{sin∠ABC}$,得$\frac{AB}{\frac{\sqrt{2}}{2}}$=$\frac{AC}{\frac{4}{5}}$,
∴AB=5.

点评 本题考查了二倍角公式和正弦定理的灵活运用和计算能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网