题目内容
设{an}等差数列,数列{bn}成等比数列.若a1<a2,b1<b2,且b1=a12,b2=a22,4b3=a32,则数列{bn}的公比为 .
考点:等比数列的性质,等差数列的通项公式,等比数列的通项公式
专题:等差数列与等比数列
分析:设等差数列{an}的公差为d,可知d>0,由等比中项结合等差数列的通项公式可得关于d的方程,解之可得d,代入q=
=
=(
)2,化简可得.
| b2 |
| b1 |
| a22 |
| a12 |
| a2 |
| a1 |
解答:
解:设等差数列{an}的公差为d,由a1<a2可知d>0,
由等比中项可得b22=b1b3,即a24=a12a32,
由等差数列的通项公式可得(a1+d)4=a12(a1+2d)2,
展开可得a14+4a13d+6a12d2+4a1d3+d4=a14+4a13d+4a12d2,
化简可得d2+4a1d+2a12=0,解得d=-2a1±
|a1|,
当a1≥0时,可得d=-2a1±
a1<0,与d>0矛盾,故舍去,
当a1<0时,可得d=-2a1±
a1>0,满足题意,
当d=-2a1+
a1时,代入可得公比q=
=
=(
)2=3-2
,满足题意,
当d=-2a1-
a1时,代入可得公比q=
=
=(
)2=3+2
,不满足题意,
综上可得数列{bn}的公比为:3-2
故答案为:3-2
由等比中项可得b22=b1b3,即a24=a12a32,
由等差数列的通项公式可得(a1+d)4=a12(a1+2d)2,
展开可得a14+4a13d+6a12d2+4a1d3+d4=a14+4a13d+4a12d2,
化简可得d2+4a1d+2a12=0,解得d=-2a1±
| 2 |
当a1≥0时,可得d=-2a1±
| 2 |
当a1<0时,可得d=-2a1±
| 2 |
当d=-2a1+
| 2 |
| b2 |
| b1 |
| a22 |
| a12 |
| a2 |
| a1 |
| 2 |
当d=-2a1-
| 2 |
| b2 |
| b1 |
| a22 |
| a12 |
| a2 |
| a1 |
| 2 |
综上可得数列{bn}的公比为:3-2
| 2 |
故答案为:3-2
| 2 |
点评:本题考查等差数列和等比数列的性质和通项公式,属中档题.
练习册系列答案
相关题目
椭圆
+
=1的焦点坐标是( )
| x2 |
| 25 |
| y2 |
| 169 |
| A、(±5,0) |
| B、(0,±5) |
| C、(0,±12) |
| D、(±12,0) |
已知a,b为正实数且ab=1,若不等式(x+y)(
+
)>M对任意正实数x,y恒成立,则实数M的取值范围是( )
| a |
| x |
| b |
| y |
| A、[4,+∞) |
| B、(-∞,1] |
| C、(-∞,4] |
| D、(-∞,4) |