题目内容

11.已知等差数列{an}中,a1=2,a3+a5=10.
(1)求数列{an}的通项公式;
(2)设bn=an•2n,求数列{bn}的前n项和Sn

分析 (1)设等差数列{an}的公差为d,运用等差数列的通项公式可得d=1,进而得到所求通项公式;
(2)求得bn=an•2n=(n+1)•2n,再由数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理即可得到所求和.

解答 解:(1)设等差数列{an}的公差为d,
a1=2,a3+a5=10,即为2a1+6d=10,
解得d=1,
则an=a1+(n-1)d=2+n-1=n+1;
(2)bn=an•2n=(n+1)•2n
前n项和Sn=2•2+3•22+4•23+…+(n+1)•2n
2Sn=2•22+3•23+4•24+…+(n+1)•2n+1
两式相减可得,-Sn=4+22+23+24+…+2n-(n+1)•2n+1
=2+$\frac{2(1-{2}^{n})}{1-2}$-(n+1)•2n+1
化简可得,前n项和Sn=n•2n+1

点评 本题考查等差数列的通项公式的运用,考查数列的求和方法:错位相减法,同时考查等比数列的求和公式的运用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网