搜索
题目内容
已知直线
与
轴交于点
,与直线
交于点
,椭圆
以
为左顶点,以
为右焦点,且过点
,当
时,椭圆
的离心率的范围是
A.
B.
C.
D.
试题答案
相关练习册答案
D
试题分析:因为给定的直线
与
轴交于点
,与直线
交于点
,椭圆
以
为左顶点,以
为右焦点,且过点
(c,k(c+a))设椭圆的方程为
,则可知有
,同时由于点M在曲线上可知,
,同时利用勾股定理得到
,联立方程组得到关系式,进而利用
,得到离心率的范围
,,故选D.
点评:解决该试题的关键是对于直线的斜率与椭圆的参数a,b,c的关系式的运用,结合椭圆的方程来分析得到,属于基础题。
练习册系列答案
一线课堂学业测评系列答案
走进名校课时优化系列答案
阳光课堂同步练习系列答案
随堂考一卷通系列答案
快乐练测课时精编系列答案
高分计划课堂前后系列答案
初中全程导学微专题跟踪检测系列答案
新编高中同步作业系列答案
同步AB卷高效考卷系列答案
考易百分百周末提优训练系列答案
相关题目
(本题满分12分)设
为抛物线
的焦点,
为抛物线上任意一点,已
为圆心,
为半径画圆,与
轴负半轴交于
点,试判断过
的直线与抛物线的位置关系,并证明。
椭圆
:
的右焦点
与抛物线
的焦点重合,过
作与
轴垂直的直线
与椭圆交于
两点,与抛物线交于
两点,且
。
(1)求椭圆
的方程;
(2)若过点
的直线与椭圆
相交于两点
,设
为椭圆
上一点,且满足
为坐标原点),当
时,求实数
的取值范围。
椭圆C:
=1(a>b>0)的两个焦点分别为F
1
(﹣c,0),F
2
(c,0),M是椭圆短轴的一个端点,且满足
=0,点N( 0,3 )到椭圆上的点的最远距离为5
(1)求椭圆C的方程
(2)设斜率为k(k≠0)的直线l与椭圆C相交于不同的两点A、B,Q为AB的中点,
;问A、B两点能否关于过点P、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.
椭圆
的焦点为
,点
在椭圆上,若
,
的大小为
.
在
中 ,
,以点
为一个焦点作一个椭圆,使这个椭圆
的另一焦点在
边上,且这个椭圆过
两点,则这个椭圆的焦距长为
.
(本小题满分13分)
已知点
为抛物线
:
的焦点,
为抛物线
上的点,且
.
(Ⅰ)求抛物线
的方程和点
的坐标;
(Ⅱ)过点
引出斜率分别为
的两直线
,
与抛物线
的另一交点为
,
与抛物线
的另一交点为
,记直线
的斜率为
.
(ⅰ)若
,试求
的值;
(ⅱ)证明:
为定值.
已知双曲线的方程为
,过左焦点F
1
作斜率为
的直线交双曲线的右支于点P,且
轴平分线段F
1
P,则双曲线的离心率是( )
A.
B.
C.
D.
(本题满分12分)
在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.
(1)求抛物线C的标准方程;
(2)设直线l是抛物线的准线,求证:以AB为直径的圆与准线l相切.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案