题目内容
已知|
|=5,|
|=8,
=
,
•
=0,
(1)求|
-
|;
(2)设∠BAC=θ,且已知cos(θ+x)=
,-π<x<-
,求sinx.
| AC |
| AB |
| AD |
| 5 |
| 11 |
| DB |
| CD |
| AD |
(1)求|
| AB |
| AC |
(2)设∠BAC=θ,且已知cos(θ+x)=
| 4 |
| 5 |
| π |
| 4 |
(1)由已知,|
|=
|
|=
,且
•
=0,即CD⊥AD,
所以cos∠BAC═
,由余弦定理,|
-
|=|
|=
=7;
(2)由(1),cosθ=
,θ=
,cos(θ+x)=cos(
+x)=
,
所以sin(
+x)=±
,而-π<x<-
,-
<
+x<
,
如果0<
+x<
,则sin(
+x)<sin
<sin
=
<
,
所以sin(
+x)=-
,此时sinx=sin[(
+x)-
]=-
.
| AD |
| 5 |
| 16 |
| AB |
| 5 |
| 2 |
| CD |
| AD |
所以cos∠BAC═
| 1 |
| 2 |
| AB |
| AC |
| BC |
52+82-2×5×8×
|
(2)由(1),cosθ=
| 1 |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 4 |
| 5 |
所以sin(
| π |
| 3 |
| 3 |
| 5 |
| π |
| 4 |
| 2π |
| 3 |
| π |
| 3 |
| π |
| 12 |
如果0<
| π |
| 3 |
| π |
| 12 |
| π |
| 3 |
| π |
| 12 |
| π |
| 6 |
| 1 |
| 2 |
| 3 |
| 5 |
所以sin(
| π |
| 3 |
| 3 |
| 5 |
| π |
| 3 |
| π |
| 3 |
3+4
| ||
| 10 |
练习册系列答案
相关题目