题目内容
18.已知集合A={-2,-1,0,1,2,3},集合B={x|-2≤x<2},则集合A∩B=( )| A. | {x|-2≤x<2} | B. | {x|-2≤x≤1} | C. | {-2,-1,0,1,2} | D. | {-2,-1,0,1} |
分析 利用交集定义求解.
解答 解:∵集合A={-2,-1,0,1,2,3},
集合B={x|-2≤x<2},
∴集合A∩B={-2,-1,0,1}.
故选:D.
点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.
练习册系列答案
相关题目
10.已知一个算法的程序框图如图所示,当输出的结果为$\frac{1}{2}$时,则输入的x值为( )
| A. | $\sqrt{2}$ | B. | 1 | C. | -1或$\sqrt{2}$ | D. | -1或$\sqrt{10}$ |
7.在△ABC中,角A,B,C的对边分别为a,b,c,若a:b:c=4:5:6,则$\frac{sin2A}{sinC}$=( )
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | $\frac{3}{2}$ |
3.圆x2+y2-4x-4y=0上的点到直线x+y-6=0的最大距离和最小距离的差是( )
| A. | $\sqrt{2}$ | B. | $3\sqrt{2}$ | C. | $2\sqrt{2}$ | D. | $4\sqrt{2}$ |
7.已知m、n是两条不同的直线,α、β、γ是三个不同的平面,下列命题中正确的是( )
| A. | 若α⊥β,β⊥γ,则α∥γ | |
| B. | 若m?α,n?β,m∥n,则α∥β | |
| C. | 若m,n是异面直线,m?α,m∥β,n?β,n∥α,则α∥β | |
| D. | 平面α内有不共线的三点到平面β的距离相等,则α∥β |