题目内容

设函数f(x)(x∈R)满足f(x+2)=2f(x)+x,且当0≤x<2时,f(x)=[x]([x]表示不超过x的最大整数),则f(5.5)=(  )
A、8.5B、10.5
C、12.5D、14.5
考点:抽象函数及其应用
专题:函数的性质及应用
分析:此题类似于函数的周期性,应先将f(5.5)转化到区间[0,2]上来,然后取整求解.
解答: 解:由题意f(x+2)=2f(x)+x得:
f(5.5)=2f(3.5)+3.5=2[2f(1.5)+1.5]+3.5
=4f(1.5)+6.5
=4×1+6.5
=10.5.
故选B
点评:本题考查了抽象函数的性质,此题的关键在于利用条件“f(x+2)=2f(x)+x”实现将所求转化为已知.这是此类问题考查的主要解题思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网