题目内容

14.已知在△ABC中,∠B=90°,D,E分别为边BC,AC的中点,将△CDE沿DE翻折后,使之成为四棱锥C′-ABDE(如图).

(Ⅰ)求证:DE⊥平面BC′D;
(Ⅱ)设平面C′DE∩平面ABC′=l,求证:AB∥l;
(Ⅲ)若C′D⊥BD,AB=2,BD=3,F为棱BC′上一点,设$\frac{BF}{FC'}=λ$,当λ为何值时,三棱锥C′-ADF的体积是1?

分析 (I)由DE∥AB,AB⊥BC可知DE⊥BC,故翻折后DE⊥BD,DE⊥C′D,得出DE⊥平面BC′D;
(II)由DE∥AB可知AB∥平面C′DE,由线面平行的性质即可得到AB∥l;
(III)VC′-ADF=VA-DC′F=$\frac{1}{3}{S}_{△C′DF}•AB$,当C′D⊥BD时,∠DC′F=45°,BC′=3$\sqrt{2}$,代入体积公式计算C′F,从而得出λ的值.

解答 证明:(Ⅰ)∵∠B=90°,D,E分别为BC,AC的中点
∴DE∥AB,
∴C'D⊥DE,BD⊥DE,又∵C'D∩BD=D,
∴DE⊥平面BC'D,
(Ⅱ)∵DE∥AB,DE?面C'DE,AB?面C'DE,
∴AB∥面C'DE,
又∵AB?面ABC',面ABC'∩面C'DE=l,
∴AB∥l.
解:(III)∵DE⊥平面BC′D,DE∥AB,
∴AB⊥平面BC′D,
∴VC′-ADF=VA-DC′F=$\frac{1}{3}{S}_{△C′DF}•AB$=1,
∴S△C′DF=$\frac{3}{2}$.
∵C′D⊥BD,C′D=BD=3,∴∠DC′B=45°,C′B=3$\sqrt{2}$.
∴S△C′DF=$\frac{1}{2}×C′D×C′F×sin45°$=$\frac{3}{2}$.
解得C′F=$\sqrt{2}$,∴BF=BC′-C′F=2$\sqrt{2}$.
∴λ=$\frac{BF}{FC′}$=2.

点评 本题考查了线面垂直的判定,线面平行的性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网