题目内容
17.已知数列{an}满足an+1=an-an-1(n≥2),a1=a,a2=b,设Sn=a1+a2+…+an,则下列结论正确的是( )| A. | a100=-a S100=2b-a | B. | a100=-b S100=2b-a | ||
| C. | a100=-b S100=b-a | D. | a100=-a S100=b-a |
分析 数列{an}满足an+1=an-an-1(n≥2),a1=a,a2=b,可得:an+6=an,a100=a4=-a.即可得出.
解答 解:∵数列{an}满足an+1=an-an-1(n≥2),a1=a,a2=b,
∴a3=b-a,a4=-a,a5=-b,a6=a-b,a7=a,a8=b,…,
∴an+6=an,
∴a100=a4=-a.
设Sn=a1+a2+…+an,则S100=(a1+a2+a3+a4)+16(a1+…+a6)
=2b-a+16×(a+b+b-a-a-b+a-b)=2b-a,
故选:A.
点评 本题考查了数列递推关系、数列的周期性、数列求和,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
8.已知圆心为(2,-3),一条直径的两个端点恰好在两个坐标轴上,则圆的方程是( )
| A. | (x-2)2+(y+3)2=5 | B. | (x-2)2+(y+3)2=21 | C. | (x-2)2+(y+3)2=13 | D. | (x-2)2+(y+3)2=52 |