题目内容

17.已知数列{an}满足an+1=an-an-1(n≥2),a1=a,a2=b,设Sn=a1+a2+…+an,则下列结论正确的是(  )
A.a100=-a   S100=2b-aB.a100=-b   S100=2b-a
C.a100=-b   S100=b-aD.a100=-a   S100=b-a

分析 数列{an}满足an+1=an-an-1(n≥2),a1=a,a2=b,可得:an+6=an,a100=a4=-a.即可得出.

解答 解:∵数列{an}满足an+1=an-an-1(n≥2),a1=a,a2=b,
∴a3=b-a,a4=-a,a5=-b,a6=a-b,a7=a,a8=b,…,
∴an+6=an
∴a100=a4=-a.
设Sn=a1+a2+…+an,则S100=(a1+a2+a3+a4)+16(a1+…+a6
=2b-a+16×(a+b+b-a-a-b+a-b)=2b-a,
故选:A.

点评 本题考查了数列递推关系、数列的周期性、数列求和,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网