ÌâÄ¿ÄÚÈÝ
ÒÑÖªÒÔa1ΪÊ×ÏîµÄÊýÁÐ{an}Âú×ãan+1=
£®
£¨¢ñ£©µ±a1=1£¬c=1£¬d=3ʱ£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©µ±0£¼a1£¼1£¬c=1£¬d=3ʱ£¬ÊÔÓÃÊýÁÐa1±íʾÊýÁÐ{an}ǰ100ÏîµÄºÍS100£»
£¨¢ó£©µ±0£¼a1£¼
£¨m¡ÊN*£©£¬c=
ʱ£¬ÕýÕûÊýd¡Ý3mʱ£¬Ö¤Ã÷£ºÊýÁÐa2-
£¬a3m+2-
£¬a6m+2-
£¬a9m+2-
³ÉµÈ±ÈÊýÁеijäÒªÌõ¼þÊÇd=3m£®
|
£¨¢ñ£©µ±a1=1£¬c=1£¬d=3ʱ£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©µ±0£¼a1£¼1£¬c=1£¬d=3ʱ£¬ÊÔÓÃÊýÁÐa1±íʾÊýÁÐ{an}ǰ100ÏîµÄºÍS100£»
£¨¢ó£©µ±0£¼a1£¼
| 1 |
| m |
| 1 |
| m |
| 1 |
| m |
| 1 |
| m |
| 1 |
| m |
| 1 |
| m |
¿¼µã£ºÊýÁеÝÍÆÊ½
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨¢ñ£©µ±a1=1£¬c=1£¬d=3ʱ£¬¸ù¾ÝµÝÍÆ¹ØÏµ¼´¿ÉÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©µ±0£¼a1£¼1£¬c=1£¬d=3ʱ£¬·Ö±ðÇó³öÊýÁеÄͨÏʽ£¬¼´¿ÉÓÃÊýÁÐa1±íʾÊýÁÐ{an}ǰ100ÏîµÄºÍS100£»
£¨¢ó£©µ±0£¼a1£¼
£¨m¡ÊN*£©£¬c=
ʱ£¬ÕýÕûÊýd¡Ý3mʱ£¬·Ö±ðÅжÏÊýÁÐa2-
£¬a3m+2-
£¬a6m+2-
£¬a9m+2-
µÄ·ûºÅ£¬¸ù¾ÝµÈ±ÈÊýÁеĵȼÛÌõ¼þ½øÐÐÅжϣ®
£¨¢ò£©µ±0£¼a1£¼1£¬c=1£¬d=3ʱ£¬·Ö±ðÇó³öÊýÁеÄͨÏʽ£¬¼´¿ÉÓÃÊýÁÐa1±íʾÊýÁÐ{an}ǰ100ÏîµÄºÍS100£»
£¨¢ó£©µ±0£¼a1£¼
| 1 |
| m |
| 1 |
| m |
| 1 |
| m |
| 1 |
| m |
| 1 |
| m |
| 1 |
| m |
½â´ð£º
½â£º£¨¢ñ£©µ±a1=1£¬c=1£¬d=3ʱ£¬an+1=
£®
ÔòÓÉa1=1µÃa2=a1+1=2£¬a3=a2+1=3£¬a4=
a3=1£¬
¼´ÊýÁо߱¸ÖÜÆÚÐÔÖÜÆÚΪ3£¬ÔòÊýÁеÄͨÏʽΪan=
k¡ÊN•£»
£¨II£©µ±0£¼a1£¼1£¬c=1£¬d=3ʱ£¬a2=a1+1£¬a3=a1+2£¬a4=a1+3£¬a5=
+1£¬a6=
+1£¬
a3k+2=
+1£¬a3k=
+2£¬a3k+1=
+3£¬
ÔòÊýÁÐ{an}ǰ100ÏîµÄºÍS100=a1+£¨a2+a2+a3£©+£¨a4+a5+a6£©+¡+£¨a98+a99+a100£©
=a1+£¨3a1+6£©+£¨a1+6+
+6£©+¡+£¨
+6£©=a1[1+
]+6¡Á33=
(11-
)+198£®
£¨3£©¢Ùµ±d=3mʱ£¬a2=a1+
£»a3m=a1+
=a1+3-
£¼3£¼a1+3=a3m+1a3m+2=
+
£¬
a6m=
-
+3£¼3£¼
+3=a6m+1£¬a6m+2=
+
£¬
a9m=a6m+2+
=
+3-
£¼3£¼
+3=a9m+1£¬
a9m+2=
=
+
×ÛÉÏËùÊö£¬µ±d=3m£¬ÊýÁÐa2-
£¬a3m+2-
£¬a6m+2-
£¬a9m+2-
Êǹ«±ÈΪ
µÄµÈ±ÈÊýÁУ®
¢Ú¼ÙÉèd¡Ý3m+1£¬Ôòa3m-1=a1+3¡Ê(3£¬3+
)£¬a3m-2=
¡Ü
£¼
£¬
¡àa3m+2¡Ê£¨0£¬
£©£¬
ÓÖa6m+1=a3m+2+
¡Ê(3-
£¬3)£¬
¡àa6m+2=a6m+1++
=3+
¡Ê(3£¬3+
)£¬
a6m+2=a6m+1+
=3+
¡Ê(3£¬3+
)£¬
a6m+3=
¡Ê(0£¬
)£¬a9m+2=a6m+3+
¡Ê(3-
£¬3)£¬
Ôòa2-
£¾0£¬a3m+2-
£¼0£¬a6m+2-
£¾0£¬a9m+2-
£¾0£¬
Ôòa2-
£¬a3m+2-
£¬a6m+2-
£¬a9m+2-
²»ÄܳɵȱÈÊýÁУ¬
¹Ê¼ÙÉè²»³ÉÁ¢£®
|
ÔòÓÉa1=1µÃa2=a1+1=2£¬a3=a2+1=3£¬a4=
| 1 |
| 3 |
¼´ÊýÁо߱¸ÖÜÆÚÐÔÖÜÆÚΪ3£¬ÔòÊýÁеÄͨÏʽΪan=
|
£¨II£©µ±0£¼a1£¼1£¬c=1£¬d=3ʱ£¬a2=a1+1£¬a3=a1+2£¬a4=a1+3£¬a5=
| a1 |
| 3 |
| a1 |
| 3 |
a3k+2=
| a1 |
| 3k+1 |
| a1 |
| 3k |
| a1 |
| 3k-1 |
ÔòÊýÁÐ{an}ǰ100ÏîµÄºÍS100=a1+£¨a2+a2+a3£©+£¨a4+a5+a6£©+¡+£¨a98+a99+a100£©
=a1+£¨3a1+6£©+£¨a1+6+
| a1 |
| 3 |
| a1 |
| 331 |
3-
| ||
1-
|
| a1 |
| 2 |
| 1 |
| 332 |
£¨3£©¢Ùµ±d=3mʱ£¬a2=a1+
| 1 |
| m |
| 3m-1 |
| m |
| 1 |
| m |
| 1 |
| m |
| a1 |
| 3m |
a6m=
| a1 |
| 3m |
| 1 |
| m |
| a1 |
| 3m |
| a1 |
| 9m2 |
| 1 |
| m |
a9m=a6m+2+
| 3m-2 |
| m |
| a1 |
| 9m2 |
| 1 |
| m |
| a1 |
| 9m2 |
a9m+2=
| ||
| 3m |
| a1 |
| 27m3 |
| 1 |
| m |
×ÛÉÏËùÊö£¬µ±d=3m£¬ÊýÁÐa2-
| 1 |
| m |
| 1 |
| m |
| 1 |
| m |
| 1 |
| m |
| 1 |
| 3m |
¢Ú¼ÙÉèd¡Ý3m+1£¬Ôòa3m-1=a1+3¡Ê(3£¬3+
| 1 |
| m |
| a1+3 |
| d |
| a1+3 |
| 3m+1 |
| ||
| 3m+1 |
¡àa3m+2¡Ê£¨0£¬
| 1 |
| m |
ÓÖa6m+1=a3m+2+
| 3m-1 |
| m |
| 1 |
| m |
¡àa6m+2=a6m+1++
| 1 |
| m |
| a1+3 |
| d |
| 1 |
| m |
a6m+2=a6m+1+
| 1 |
| m |
| a1+3 |
| d |
| 1 |
| m |
a6m+3=
| a3m+2 |
| d |
| 1 |
| m |
| 3m-1 |
| m |
| 1 |
| m |
Ôòa2-
| 1 |
| m |
| 1 |
| m |
| 1 |
| m |
| 1 |
| m |
Ôòa2-
| 1 |
| m |
| 1 |
| m |
| 1 |
| m |
| 1 |
| m |
¹Ê¼ÙÉè²»³ÉÁ¢£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éµÝÍÆÊýÁеÄÓ¦Óã¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿