题目内容

数列1
1
2
,3
1
4
,5
1
8
,7
1
16
,…,(2n-1)+
1
2n
,…的前n项和Sn的值为(  )
分析:把数列的每一项分为两项,重新组合可化为等差数列和等比数列的求和,代公式可得.
解答:解:由题意可得Sn=(1+
1
2
)+(3+
1
4
)+(5+
1
8
)+…+(2n-1+
1
2n

=(1+3+5+…+2n-1)+(
1
2
+
1
4
+
1
8
+…+
1
2n

=
n(1+2n-1)
2
+
1
2
(1-
1
2n
)
1-
1
2
=n2+1-
1
2n

故选A
点评:本题考查等差数列和等比数列的求和公式,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网