题目内容
20.已知i是虚数单位,则复数$z={({\frac{1+i}{{\sqrt{2}}}})^{2017}}$在复平面内对应的点在( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 $(\frac{1+i}{\sqrt{2}})^{4}$=$(\frac{2i}{2})^{2}$=-1.代入利用周期性即可得出.
解答 解:∵$(\frac{1+i}{\sqrt{2}})^{4}$=$(\frac{2i}{2})^{2}$=-1.
∴复数$z={({\frac{1+i}{{\sqrt{2}}}})^{2017}}$=$[(\frac{1+i}{\sqrt{2}})^{4}]^{504}•$$\frac{1+i}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{2}}{2}$i
在复平面内对应的点($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)在第一象限.
故选:A.
点评 本题考查了复数的运算法则、周期性、几何意义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
10.随机地取两个数x,y,使得x∈[-1,1],y∈[0,1],则满足y≥x2的概率是( )
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
11.函数y=$\sqrt{2x-3}$+$\frac{1}{x-3}$的定义域为( )
| A. | [$\frac{3}{2}$,+∞) | B. | (-∞,3)∪(3,+∞) | C. | [$\frac{3}{2}$,3)∪(3,+∞) | D. | (3,+∞) |
8.在复平面内复数z=$\frac{3+4i}{1-i}$(i为虚数单位)对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
9.在平面直角坐标系xOy中,已知△ABC顶点A(-4,0)和C(4,0)顶点B在椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1上,则$\frac{sinA+sinC}{sin(A+C)}$=( )
| A. | $\frac{4}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{4}$ |