题目内容
16.用辗转相除法求240和288的最大公约数时,需要做2次除法;利用更相减损术求36和48的最大公约数时,需要进行3次减法.分析 利用辗转相除法求出240和288的最大公约数,统计除法的次数可得答案.利用更相减损术求36和48的最大公约数统计减法的次数可得答案.
解答 解:∵288=240×1+48,
240=48×5,
故240和288的最大公约数为48,在求解过程中共进行了2次除法运算,
48-36=12,36-12=24,24-12=12,利用更相减损术求36和48的最大公约数时,需要进行3次减法.
故答案为:2,3.
点评 本题考查了辗转相除法,考查了更相减损术,熟练掌握辗转相除法的运算法则,是解答的关键,本题难度不大,属于基础题.
练习册系列答案
相关题目
6.函数f(x)=$\frac{lg({x}^{2}-1)}{\sqrt{{x}^{2}-x-2}}$的定义域为( )
| A. | (-∞,-2)∪(1,+∞) | B. | (-2,1) | C. | (-∞,-1)∪(2,+∞) | D. | (1,2) |
7.函数y=sin2x图象上的某点P($\frac{π}{12}$,m)可以由函数y=cos(2x-$\frac{π}{4}$)上的某点Q向左平移n(n>0)个单位长度得到,则mn的最小值为( )
| A. | $\frac{5π}{24}$ | B. | $\frac{5π}{48}$ | C. | $\frac{π}{8}$ | D. | $\frac{π}{12}$ |
1.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{0}&{x=1}\\{|lg|x-1||}&{x≠1}\end{array}\right.$,则关于x的方程f2(x)+bf(x)+c=0有7个不同实数解的充要条件是( )
| A. | b<0且c>0 | B. | b>0且c<0 | C. | b<0且c=0 | D. | b>0且c=0 |
8.已知函数f(x)=x2-ax($\frac{1}{e}$≤x≤e,e为自然对数的底数)与g(x)=ex的图象上存在关于直线y=x对称的点,则实数a取值范围是( )
| A. | [1,e+$\frac{1}{e}$] | B. | [1,e-$\frac{1}{e}$] | C. | [e-$\frac{1}{e}$,e+$\frac{1}{e}$] | D. | [e-$\frac{1}{e}$,e] |
5.设M是△ABC边BC上的任意一点,$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{NM}$,若$\overrightarrow{AN}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λ+μ=( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |