题目内容
已知一个四面体的所有棱长都为2,则该四面体的外接球表面积为________.
在中,,,,则 .
已知为等比数列,,,则 ( )
A. B. C. D.
(本小题满分12分)
已知椭圆的离心率为,以原点为圆心,椭圆的长半轴这半径的圆与直线相切.
(1)求椭圆标准方程;
(2)已知点为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,说明理由.
设函数 若,则实数a的取值范围是 .
(本小题满分12分)
为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下:
女生:
男生:
(1)从这20名男生中随机选出3人,求恰有一人睡眠时间不足7小时的概率;
(2)完成下面2×2列联表,并回答是否有90%的把握认为“睡眠时间与性别有关”?
(,其中)
已知圆的方程为。若过点的直线与此圆交于两点,圆心为,则当最小时,直线的方程为 。
在上单调递减,则b的取值范围为 .
根据如图样本数据得到的回归方程为=bx+a,若样本点的中心为.则当x每增加1个单位时,y就( )
A.增加1.4个单位 B.减少1.4个单位
C.增加7.9个单位 D.减少7.9个单位