题目内容
已知集合.
(1)求集合;
(2)求证:的充要条件为;
(3)若命题,命题且是的充分不必要条件,求实数的取值范围.
设函数 的最小值为-1,则实数的取值范围是
A. B. C. D.
函数若方程恰有四个不相等的实数根,则实数m的取值范围是_____.
某几何体三视图如图所示,则该几何体的体积为( )
已知函数.
(1)求的解析式;
(2)用单调性的定义证明函数在其定义域上为增函数;
(3)解关于的不等式.
甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数的解析式(利润=销售收入-总成本);
(2)要使甲厂有盈利,求产量的范围;
(3)甲厂生产多少台产品时,可使盈利最多?
己知,则m等于( )
(本题满分18分,第1小题满分4分,第2小题满分6分,第3小 题满分8分. )
已知数列{}满足:,为数列的前项和。
若{}是递增数列,且成等差数列,求的值;
若,且{}是递增数列,{}是递减数列,求数列{}的通项公式;
若,对于给定的正整数,是否存在一个满足条件的数列,使得,如果存在,给出一个满足条件的数列,如果不存在,请说明理由。
已知椭圆的离心率为,左、右焦点分别为E、F,椭圆上的点P满足,且△PEF的面积为1,抛物线经过点(2,2).
(Ⅰ)分别求椭圆与抛物线的方程;
(Ⅱ)已知为轴上一点,倾斜角为的直线交椭圆于A、B两点,线段AB的中点为M,直线QM交抛物线于C、D两点,四边形ACBD的面积记为S,若对任意直线l,都存在点Q,使得,求实数的取值范围.