题目内容
11.设函数f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{{x}^{2}+x-2,x>1}\end{array}\right.$则f($\frac{1}{f(2)}$)的值为( )| A. | 18 | B. | -$\frac{27}{16}$ | C. | $\frac{8}{9}$ | D. | $\frac{15}{16}$ |
分析 直接利用分段函数,逐步求解函数值即可.
解答 解:函数f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{{x}^{2}+x-2,x>1}\end{array}\right.$,
f(2)=22+2-2=4,
则f($\frac{1}{f(2)}$)=f($\frac{1}{4}$)=1-$(\frac{1}{4})^{2}$=$\frac{15}{16}$.
故选:D.
点评 本题考查分段函数的应用,函数值的求法,考查计算能力.
练习册系列答案
相关题目
6.阅读如图所示的程序框图,运行相应的程序,若输出的结果s=16,则图中菱形内应该填写的内容是( )
| A. | n<2? | B. | n<3? | C. | n<4? | D. | n<5? |