题目内容
18.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-3\\;x≤0}\\{{x}^{\frac{1}{2}}\\;x>0}\end{array}\right.$,若f(a)>1,则实数a的取值范围是a<-2或a>1.分析 由题意原不等式等价于$\left\{\begin{array}{l}{a≤0}\\{(\frac{1}{2})^{a}-3>1}\end{array}\right.$或$\left\{\begin{array}{l}{a>0}\\{{a}^{\frac{1}{2}}>1}\end{array}\right.$,解不等式组可得.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-3\\;x≤0}\\{{x}^{\frac{1}{2}}\\;x>0}\end{array}\right.$,
∴f(a)>1等价于$\left\{\begin{array}{l}{a≤0}\\{(\frac{1}{2})^{a}-3>1}\end{array}\right.$或$\left\{\begin{array}{l}{a>0}\\{{a}^{\frac{1}{2}}>1}\end{array}\right.$,
分别解关于a的不等式组可得a<-2或a>1,
故答案为:a<-2或a>1.
点评 本题考查分段函数不等式的解法,化为不等式组是解决问题的关键,属基础题.
练习册系列答案
相关题目
6.已知集合A={x|2x2-x-1≤0},集合B={x|y=$\frac{2ln({3}^{x}-1)}{(x-1)^{2}}$},则A∩B=( )
| A. | (0,1) | B. | (0,1] | C. | (1,+∞) | D. | [1,+∞) |
16.己知cos31°=a,则sin239°•tan149°的值是( )
| A. | $\frac{1-{a}^{2}}{a}$ | B. | $\sqrt{1-{a}^{2}}$ | C. | $\frac{{a}^{2}-1}{a}$ | D. | -$\sqrt{1-{a}^{2}}$ |