题目内容

如图所示,已知长方体ABCD—A1B1C1D1中,AB=BC=2,AA1=4,
E是棱CC1上的点,且BE⊥B1C.
(1)求CE的长;
(2)求证:A1C⊥平面BED;
(3)求A1B与平面BDE所成角的正弦值.
(1) CE="1" (2)证明略(3)A1B与平面BDE所成角的正弦值为
(1) 如图所示,以D为原点,DA、DC、DD1所在直线分别为x、y、z轴建立空间直角坐标系D—xyz.

∴D(0,0,0),A(2,0,0),B(2,2,0),
C(0,2,0),A1(2,0,4),
B1(2,2,4),C1(0,2,4),D1(0,0,4).
设E点坐标为(0,2,t),则=(-2,0,t),=(-2,0,-4).
∵BE⊥B1C,
·=4+0-4t=0.∴t=1,故CE=1.
(2)由(1)得,E(0,2,1),=(-2,0,1),
=(-2,2,-4),=(2,2,0),
·=4+0-4=0,
·=-4+4+0=0.
,即A1C⊥DB,A1C⊥BE,
又∵DB∩BE=B,∴A1C⊥平面BDE.
即A1C⊥平面BED.
(3) 由(2)知=(-2,2,-4)是平面BDE的一个法向量.又=(0,2,-4),
∴cos〈,〉==.
∴A1B与平面BDE所成角的正弦值为.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网