题目内容

已知tan(7π+α)=-2.
(1)求
cos2α-2sin2α
sin2α+3cos2α
的值;
(2)若α是第二象限角,求
sin(π-α)cos(
π
2
+α)-tan(3π+α)
sin(4π-α)sin(
2
+α)
的值.
考点:同角三角函数基本关系的运用,运用诱导公式化简求值
专题:计算题
分析:先化简tan(7π+α)=-2,求出tanα的值,再把(1)、(2)化简并弦化切,灵活利用同角的平方关系,即可计算出正确的答案.
解答: 解:∵tan(7π+α)=-2,
∴tanα=-2;
∴(1)
cos2α-2sin2α
sin2α+3cos2α
=
1-2tan2α
tan2α+3

=
1-2×(-2)2
(-2)2+3

=
1-8
4+3

=-1;
(2)
sin(π-α)cos(
π
2
+α)-tan(3π+α)
sin(4π-α)sin(
2
+α)
=
sinα•(-sinα)-tanα
-sinα•(-cosα)

=
-sin2α-tanα
sinαcosα

=
-sin2α
sin2α+cos2α
-tanα
sinαcosα
sin2α+cos2α

=
-tan2α
tan2α+1
-tanα
tanα
tan2α+1

=
-(-2)2
(-2)2+1
-(-2)
-2
(-2)2+1

=-3.
点评:本题考查了同角的三角函数的基本关系的应用问题,解题时应灵活运用弦化切以及平方关系,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网