题目内容
若数列{an}的通项an=-2n2+29n+3,则此数列的最大项的值是( )
| A.107 | B.108 | C.108
| D.109 |
∵n=-
=
,
∵n∈N
∴n=7
∴a7=108,
故选B
| 29 |
| 2×(-2) |
=
| 29 |
| 4 |
∵n∈N
∴n=7
∴a7=108,
故选B
练习册系列答案
相关题目
题目内容
| A.107 | B.108 | C.108
| D.109 |
| 29 |
| 2×(-2) |
| 29 |
| 4 |