题目内容
7.已知集合A={x|1≤x<4},B={x|x-a<0}.(1)当a=3时,求A∩B,A∪B;
(2)若A⊆B,求实数a的取值范围.
分析 (1)当a=3时,利用两个集合的交、并集的定义求得A∩B,A∪B.
(2)由题意知,集合A={x|1≤x<4},集合B={x|x<a},由A⊆B,可得a≥4,从而求得实数a的取值范围.
解答 解:(1)当a=3时,B={x|x<3}.
∴A∩B={x|1≤x<3},A∪B={x|x<4};
(2)∵A⊆B,B={x|x<a},
∴a≥4,
故实数a的取值范围为[4,+∞).
点评 本题主要考查两个集合的并集的求法,集合间的包含关系,求集合中参数的范围,属于基础题.
练习册系列答案
相关题目
17.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:万元)对年销售量y(单位:吨)的影响,为此对近6年的年宣传费x(单位:万元)和年销售量y(单位:吨)的数据进行整理,得如下统计表:
(Ⅰ)由表中数据求得线性回归方程$\hat y=\hat bx+\hat a$中的$\hat b≈0.6$,试求出$\hat a$的值;
(Ⅱ)已知这种产品的年利润z(单位:万元)与x、y之间的关系为z=30y-x2,根据(Ⅰ)中所求的回归方程,求年宣传费x为何值时,年利润z的预估值最大?
| x(万元) | 2 | 3 | 4.5 | 5 | 7.5 | 8 |
| y(吨) | 3 | 3.5 | 3.5 | 4 | 6 | 7 |
(Ⅱ)已知这种产品的年利润z(单位:万元)与x、y之间的关系为z=30y-x2,根据(Ⅰ)中所求的回归方程,求年宣传费x为何值时,年利润z的预估值最大?
18.已知函数f(x)=2cos(ωx+φ)+1(ω>0,|φ|<$\frac{π}{2}$),其图象与直线y=3相邻两个交点的距离为$\frac{2π}{3}$,若f(x)>1对?x∈(-$\frac{π}{12}$,$\frac{π}{6}$)恒成立,则φ的取值范围是( )
| A. | [-$\frac{π}{6}$,$\frac{π}{6}$] | B. | [-$\frac{π}{4}$,0] | C. | (-$\frac{π}{3}$,-$\frac{π}{12}$] | D. | [0,$\frac{π}{4}$] |
15.若α为锐角且cos($α+\frac{π}{6}$)=$\frac{2}{3}$,则sin($\frac{π}{3}-α$)=( )
| A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{\sqrt{5}}{3}$ | D. | -$\frac{\sqrt{5}}{3}$ |
19.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的$\frac{7}{8}$时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于( )
| A. | $\frac{7}{6}$π | B. | $\frac{4}{3}$π | C. | $\frac{2}{3}$π | D. | $\frac{1}{2}$π |
17.若x是三角形的最小内角,则函数y=sinx+cosx-sinxcosx的最小值是( )
| A. | -$\frac{1}{2}$+$\sqrt{2}$ | B. | $\frac{1}{2}$+$\sqrt{2}$ | C. | 1 | D. | $\sqrt{2}$ |